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Abstract

Sequential sampling models have been tremendously successful in describing mechanisms of decision-making at the
behavioral level, and at providing testable predictions at the neural level. What is missing to date is how these same
mechanisms can flexibly give rise to the broad range of decisions humans are making every day. For instance, humans
can choose the best item in a set, or they can assign a value to their option set as a whole. With rare exceptions, only
the computational mechanisms underlying the former type of choice have been studied. More so, our understanding of
value-based decisions is dominated by decisions that identify the most valuable item or how valuable it is. Our recent
work has begun to uncover the necessary transformations to additionally afford least valuable item choices. Whether and
how a single sequential sampling mechanism could flexibly accommodate all these, and more, types of decisions remains
a gap in our understanding. To address this gaps, we developed a theoretical framework that makes explicit the necessary
representations upon which sequential sampling operates, and outlines how these representations could adjust which
information is used as evidence and how it is accumulated in support of one’s current choice goals. We show that this
framework can parsimoniously explain behavior across a range of different choice goals by implementing and simulating
behavior from an extended leaky competing accumulator model. We also generate predictions for novel choice goals
to test the generality of the framework. Our framework unifies mechanisms of cognitive control and mechanisms of
decision-making, and in doing so provides a novel perspective on the dimensions along which choices can differ. By
rendering visible the hidden knobs that afford qualitatively different decisions using similar mechanisms, we offer novel
leverage for understanding why some decisions are hard while others are not, and how poor decisions may arise.
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1 Introduction

Humans are remarkably flexible decision-makers and able
to adjust how they make decisions to their myriad - even
most arbitrary - goals (cf. Fig. 1).
achieve this flexibility? Both, value-based and percep-
tual decision-making have been successfully formalized
using sequential sampling models [1]. These models cap-
ture a wide variety of decisions, including choosing the
best among sets of multiple options [2], assigning a rat-
ing or monetary value to options [3], and selecting re-
sponses along a continuum (e.g., redness of the kettle on
a color wheel) or even in 2D space (e.g., where is Waldo?)
[4]. However, since this computational work models each
type of decision in isolation, it does not explain how hu-
mans can flexibly make any of those decisions within the
same cognitive architecture. Here, we link research into
the computational mechanisms of decision-making with
research into cognitive control to render visible the hid-
den knobs that afford the remarkable flexibility of human
decision-making.

1.1 Framework

We start from the premise that a single, flex-
ible architecture supports a variety of goal-
directed decisions and outline how a typi-
cal sequential sampling model should be ex-
tended under this assumption. Our frame-
work integrates a sequential sampling pro-
cess into a cognitive control architecture that
sets the parameters of the embedded decision-
making process according to the decision-
maker’s current choice goal and the character-
istics of the current decision (Fig. 2). To flex-
ibly make decisions and adjust decision pa-
rameters accordingly, a decision-maker needs
to represent the following information:

a) What is the relevant feature dimension
upon which I want to decide (e.g., size versus
value)?

b) How does this property translate into ev-
idence for my goal (e.g., finding largest vs
smallest)?

c) What is the response structure (e.g., are all
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Figure 1. When faced with a given option set, people can
engage in different types of decisions, including choosing
among them or appraising the set as a whole. Current
models of decision-making can explain either of these in
isolation, but not both.
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choice options equally mutually exclusive)?

In our flexible connectionist framework, these
representations consist in weight changes be-
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tween nodes, e.g., input feature nodes (per-
ceptual vs value-based) and nodes of the
hidden layer that transforms inputs to evi-
dence; nodes of that hidden layer and re-
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sponse nodes; as well as between these re-
sponse nodes, respectively. These weight-
changes afford goal-dependent adjustments
to information processing, paralleling similar
mechanisms in cognitive control tasks [5], and
parsimoniously enable a range of decisions
within one architecture.

Figure 2. Flexible decision-making architecture. Control mechanisms
set the parameters on the embedded sequential sampling process. These
determine (a) which type of information is selected (attention goal), (b)
how this information is transformed into evidence (transformation goal),
and (c) how the information is integrated to generate a choice (integra-
tion goal).



2 Model implementation

We implemented this framework by extending a connectionist, biologically plausible sequential sampling model, the
leaky competing accumulator model (LCA) [6]. In the LCA, evidence at each time step t is accumulated as

At = At—l + EI — kAt_l - wWAt_l + sN (1)

where A is the matrix of response activations, I is an input vector containing the evidence assigned uniquely to each
response via identity matrix F, k is a leak parameter that scales how much evidence is “forgotten” from one sampling
point to the next, w is a scalar on mutual inhibition W, suppressing activation for each response proportional to the
current activation of the alternative responses, and s is a scalar on normally distributed noise (V) for each option. Note
that this description already foreshadows critical aspects of our extension: 1) we formalize the components as matrices
that can arbitrarily vary in size, adding E, 2) the inputs reflect evidence, not sensory or value inputs, and 3) the evidence
is accumulated at the level of responses, which are separate from stimuli. In a typical value-based decision-making task,
A and [ would be vectors with one entry corresponding to one option. The inputs in I would correspond to the average
value v;; of the currently relevant feature dimension sampled for each option and be added to the accumulator for that
respective option only via the excitation matrix £. All options are equally mutually exclusive, and inhibit each other with
a constant weight (cf. Fig. 3 left). For the case of four options, we can therefore rewrite the equation above as follows:

ait a1t—1 1 0 0 O V1 a14—1 0 -1 -1 -1 atp_1
ast| _ |agt—1 0 1 0 0f |ve azt—1 -1 0 -1 —1] |a2_1
ase |~ |asi—1 + 0 0 1 0] |vg| k asi—1| wl 1 1 0 -1/ |ag, + sN (2)
Q4 aqt—1 0 0 0 1] [vg Aap—1 -1 -1 -1 0| au_y

In what follows we will unpack how changes to I, £ and W can give rise to a qualitatively different decision based on
the same options, the appraisal of their value as a set.

2.1 Integrating evidence in accord with relevant outputs

When appraising one or multiple options (e.g., rating their
value or size), responses do not map onto concrete op- ) )
tions (e.g., “choose the bottle”),but onto discrete levels Choice Appraisal
of the relevant quantity (e.g., “choose the highest value a
level”). In contrast to options, these levels (e.g. ratings) |
are also not entirely independent, but neighboring levels
are more similar than levels that are farther apart. For in-
stance, when rating an option as a 2 (out of 5), 1 and 3
are more plausible alternatives than 4 or 5. To account for
this structure we make the following changes to the accu-
mulator (cf. Fig 3): Instead of mapping sampled option
values 1:1 onto accumulator evidence, samples for each
option are mapped onto the response space (e.g., 5 ordi-
nal ratings) and integrated across options. Due to the or-
dinal response structure of ratings, instead of evidence for
each option favoring that option only (e.g., the bottle), ev-
idence for one response also provides partial evidence for
other responses proportional to their distance (e.g., evi-
dence for rating 2 also activates rating 1 and 3 via E, cf.
Fig. 3). Likewise, instead of all options equally inhibit-
ing each other, mutual inhibition increases with response
distance (via W).

Inhibition

|
L

Excitation

Appraisal rating” |

]
S A=

Evidence

Responses

2.2 Transforming sampled values into suitable inputs

In each example so far, maximizing the relevant quantity
is taken as a given. However, we frequently need to se-
lect the smallest item or one that has exactly the right size
(or value). In our recent work we have shown that typical
response speeding with increasing overall value reverses
when participants aim to choose the worst instead of the
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Figure 3. Reconfiguration of the accumulator
structure flexibly affords choice and appraisal of
the same options.



best item [7]. We could capture these findings through goal-dependent coding of reward as inputs to an LCA. To accom-
modate this, we introduced a hidden layer in which value information (v;) is transformed into goal-dependent evidence
(43), suitable for accumulation. Here we expand on this work and generate predictions for how this goal manipulation
should impact set appraisals (liking vs disliking). We will show below that introducing the hidden layer can parsi-
moniously reproduce behavior in best/worst choice, and - combined with the changes to integration above - generate
liking / disliking appraisals. We will further generate behavioral predictions for novel transformation goals, mediocrity
and extremity, respectively. We assume that all our simulations equally apply to perceptual decisions based on previous
work comparing value-based and perceptual decisions, and modeling either by changing the relevant input variables[8].

3 Simulations

We simulate choices and appraisals across varying set sizes and

transformation goals with threshold z = 2.243, non-decision-

time ¢y = 0.2122 per stimulus in a set, decay k£ = 0.153, and recti- .
fied activation at zero. For choices, we scaled noise by s = 0.587, _—
and mutual inhibition by w = 0.671, and provided a constant
input of 1 to all options essentially implementing a collapsing
bound to assure timely choices when value difference and/or
input values were zero. For appraisal, noise was scaled to s = 0,
and inhibition was scaled by w = 1. We simulated appraisals
with five discrete response options, as in our previous work [7].
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Our simulations of choices and appraisals capture canonical be- 2
havioral findings (Fig. 4): Choices are faster and more consis-
tent as the value difference between options increases, and re-
sponse times further decrease as the overall value of the options
increases [7]. Appraisal ratings increase with the overall value
of the set [7, 9], and response times are faster for choices among
more extreme compared to average overall values [10, 11].
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interesting dissociations between appraisal and choice as set

size varies. Consistent with Hick’s Law and previous findings,
choices are slower as the number of possible responses increases
with set size. In the model this occurs due to increasing total in-
hibition across options [9]. However, since appraisals involve
integrating across options to select among a constant set of re-
sponses, they demonstrate a different pattern. Our model pre-
dicts a non-linear effect of set size on RT due to two opposing ef-
fects. Increasing the number of options, increases the total input
and non-decision time, the former speeding up decision time,
the latter slowing overall RTs.

Figure 4. Flexible decision-making architecture.
Control mechanisms set the parameters on the em-
bedded sequential sampling process. These de-
termine (a) which type of information is selected
(attention goal), (b) how this information is trans-
formed into evidence (transformation goal), and
(c) how the information is integrated to generate a
choice (integration goal).

3.2 Transformation Goal Simulations

Our simulations reproduce our previous findings for best/worst choice and show that our same architecture can generate
goal-congruent appraisal ratings (Fig. 5). Since choice RTs speed up with increasing magnitude of the inputs [7], their
relationship with overall value reverse as the goal changes from choosing the best to choosing the worst. However,
appraisals are more sensitive to the consistency of the input [10]. Since inverting the appraisal goal does not change this
consistency, our model predicts that this goal manipulation should not affect appraisal RTs. To show generality of this
dissociation, we additionally simulated extremity /mediocrity choices and appraisals using the same option sets. Again,
we find that the model can perform both tasks and that changing the choice goal strikingly changes choice RT, but much
less affects appraisal RT patterns.

4 Conclusion

Our model integrates insights from cognitive control with a biologically inspired computational model of decision-
making to offer insights into how humans flexibly decide based on their current goals. By accommodating a range
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Figure 5. Transformation goals shape behavior. Our model predicts that transformation goals that symmetrically
change the magnitude of the inputs (best vs worst or mediocrity vs extremity) affect choice but not appraisal RTs, which
are only sensitive to changes to the consistency of the inputs (e.g., liking vs extremity lead to inverse U vs M-pattern).

of different decisions, our framework renders visible the necessary representations of one’s response structure and how
incoming information relates to one’s goals. This change in perspective lays the ground for investigating how deviations
in these representations, or poor maintenance, may give rise suboptimal decision-making. Our framework further ex-
tends beyond notions of reward and difficulty, and provides novel axes for critical properties which different kinds of
decisions might share, or in which they might differ. These offer testable predictions and can give novel insights into
decision-makers’ performance and experience of their decisions.
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