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An organism’s survival depends on its ability to learn about its environment and to make adaptive decisions in the service of
achieving the best possible outcomes in that environment. To study the neural circuits that support these functions, researchers
have increasingly relied on models that formalize the computations required to carry them out. Here, we review the recent history
of computational modeling of learning and decision-making, and how these models have been used to advance understanding of
prefrontal cortex function. We discuss how such models have advanced from their origins in basic algorithms of updating and
action selection to increasingly account for complexities in the cognitive processes required for learning and decision-making, and
the representations over which they operate. We further discuss how a deeper understanding of the real-world complexities in
these computations has shed light on the fundamental constraints on optimal behavior, and on the complex interactions between
corticostriatal pathways to determine such behavior. The continuing and rapid development of these models holds great promise
for understanding the mechanisms by which animals adapt to their environments, and what leads to maladaptive forms of learning
and decision-making within clinical populations.

Neuropsychopharmacology; https://doi.org/10.1038/s41386-021-01126-y

INTRODUCTION
One of the brain’s most fundamental functions is to guide the
organism towards good outcomes and away from bad ones.
Over the past few decades, research into the role of prefrontal
cortex in these functions has flourished, driven not only by
novel empirical observations (see Soltani & Koechlin [1],
Monosov & Rushworth [2], and Friedman & Robbins [3] this
issue (also see the chapter by Friedman &Robbins in this
volume) but also by the increased availability of computational
models to account for those findings, and to enable the
development and testing of novel hypotheses. In this chapter,
we review the significant progress that has been made towards
developing better models for how animals learn about their
environment (e.g., what kinds of actions they can take and
what outcomes might result) and how they make decisions
about the best course of action. We will describe how these
models have advanced over the years to account for the types
of complexity (e.g., action hierarchy) and constraints (e.g.,
limited cognitive resources) that characterize real-world learn-
ing and decision-making. Finally, we will discuss insights that
have been gained through increased interaction between
these two families of algorithms, as well as shared opportu-
nities and pitfalls for applying these models to the under-
standing of psychological processes, neural circuitry, and
clinical disorders.

COMPUTATIONAL MODELS OF LEARNING
Early models of learning
Computational models of learning have a long history in the
cognitive sciences, dating back to behaviorism. Some of the
first computational models of learning attempted to capture a
family of phenomena observed in classical conditioning: a
neutral (conditioned) stimulus (e.g., a bell, CS) becomes
predictive of an appetitive (unconditioned) stimulus (e.g., food,
US), after repeated exposure to the food following the bell; the
bell then starts eliciting reflexive responses normally reserved
for the US (e.g., salivation) [4]. The Rescorla-Wagner (RW)
model [5] provided a mathematical formalism that could
capture this acquisition phenomenon, as well as others such
as extinction (unlearning when the CS stops being paired with
the US), blocking (no learning for a new CS if it is paired with a
CS that already predicts the US), and overshadowing (stronger
learning for more salient stimuli). RW tracks the prediction
strength Wi of each CS, and updates it at each occurrence in
proportion to the prediction error, controlled by a shared
learning rate (0 < α < 1) and a specific saliency parameter (0 <
βi < 1). The prediction error takes into account the cumulative
prediction made by all present CS, and the value of the
outcome (positive in the presence of a US, 0 in its absence).

Wi tþ 1ð Þ¼ Wi tð Þ þ αβi outcome tð Þ � W1 tð Þþ¼ þWn tð Þð Þ½ �
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Together, this simple, intuitive equation captured many aspects of
classical conditioning, and represented a major starting point for the
computational modeling of animal learning. However, this model
also had limitations, of two major kinds. First, it was unable to
account for some well-established findings in the domain of classical
conditioning, such as second-order conditioning (where repeated
exposure to a light followed by the bell lead to the light becoming
conditioned too) or reinstatement (where learning was faster after
undergoing extinction). Second, the model was focused on reflexive
behaviors (e.g., salivating) rather than any type of choices, which
behaviorists established could be trained in similar ways [6].
Since then, a broadening field of computational modeling has

extended the family of computational models that RW is a part of,
tackling some of its limitations (such as capturing second-order
conditioning), and still grappling with others (such as reinstate-
ment). This family of models falls under the umbrella term of
reinforcement learning (RL), and defines the problem of learning as
learning to select actions in different states with the goal of
maximizing the cumulative future (discounted) rewards. A sub-
family of RL algorithms (called “model-free”), solve this problem by
estimating the value of states, actions, or state-action pairs in a
way that is very similar to RW: the observation of a prediction error
δ= r− V (the difference between observed and predicted out-
come) drives learning in proportion to a learning rate α. The
simplest such model, sometimes called “delta-rule”, only considers
the immediate reward as the outcome:

V tþ 1ð Þ ¼ V tð Þ þ αδ

where V could be the value of a state, or a state-action pair. To
take into account sequential dependencies and future outcomes,
as observed in second-order conditioning, the temporal-difference
learning algorithm uses as a prediction not only the immediate
outcome, but also the value of the next state, temporally
discounted by γ:

δ ¼ rþ γV stþ1ð Þ � V stð Þ
Here, if γ= 0, the value of the next state is ignored, while if γ= 1,

there is no time discounting—γ is usually set between those

extremes. The introduction of temporal difference (TD) was
important in many ways. First, it enabled RL models to capture
phenomena RW could not, such as second-order conditioning:
because the bell has acquired value, observing the bell after the
light will drive a prediction error (and thus learning) even in the
absence of an immediate reward: δ= 0+ γ V(bell)− V(light).
Second, seminal work in the 1990s showed that this temporal
difference prediction error signal was a good quantitative model
for the phasic firing of dopamine neurons [7, 8], making TD-RL a
strong candidate for a computational model of learning at all three
of Marr’s levels of analysis [9, 10]: functional (the goal is to optimize
future reward), algorithmic and representational (by estimating
reward values with reward prediction error updates), and
mechanistic (implemented by dopamine dependent signaling).
Indeed, since this foundational finding, a host of research has

established the existence of a network of brain areas that appear
to encode RL-like computations: the cortico-basal ganglia net-
work, with dopamine-dependent plasticity. This loop circuit
originates in cortex, and projects back to a similar area via
projections to striatum and thalamus. There is now strong
evidence that striatum encodes activity related to action value
[11] in a way that causally influences choice [12]. Dopamine-
dependent plasticity in striatum [13] is thought to be an important
mechanism for the learning of those values [14, 15]. These parallel
loops originate in multiple places in cortex, including multiple
areas of prefrontal cortex, showing an important role for the
cortex in representing states and actions over which RL
computations operate [16]. For instance, research has shown that
some choices can be particularly abstract and executive (pre-
frontal cortex-dependent), such as learning how to use working
memory (i.e., which information to gate in or out [17]).
More recent research increasingly recognizes that the RL

framework, on its own, is too limited to capture the flexibility of
learning in human and non-human animals. In particular, PFC-
dependent mechanisms appear to provide much nuance to the
way information is used and organized to make decisions in a
learning environment. In the next part, we present a survey of
computational models of learning along two dimensions. First,
some research keeps the overall structure of the RL learning
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Fig. 1 Levels of state and action representation during learning. A To obtain rewards (r), we need to learn what actions (a) to select in
different states (s). However, observations from our environment (e.g., a busy street) are very complex. For efficient learning, they need to be
converted into a lower dimensional, goal-relevant state space (e.g., the distance to a bakery, if we’re hungry). Outcomes are also internally
processed into goal-dependent rewards (e.g., a chocolate chip muffin might be rewarding when hungry, but not when on a diet). Orange arrows
reflect that internal representations (e.g., memories, goals, learned representations, attention etc.) influence what states, choices and outcomes the
agent considers. These variables are then passed to an adaptive decision making process (thick box), such as an RL model evaluating the cached
value of different choices (e.g., buying a muffin vs. buying fruit salad; see also Fig. 2). The resulting reward drives learning (blue arrows). B An agent
may represent states and choices at multiple levels of hierarchy, and learn to make choices over these different state-action pairs simultaneously.
For example, an agent might make a more abstract choice (going to a bakery) in an abstract state (hungry in the street), which constrains lower
level choices (state: in front of the bakery; choice: open the door of the bakery). The outcome will drive learning at multiple levels of the hierarchy,
and can also influence the structure of the hierarchical representation (blue arrows).
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algorithms intact as a model of learning, but argues that more
complex behavior can be explained by making this structure more
subtle in various ways: how are state and action spaces defined?
Might multiple RL computations co-exist? Second, other research
argues that the existing RL architecture of learning needs to be
supplemented with other computational architectures, expressing
different optimization functions, and reflected by different
underlying brain mechanisms. These might include working
memory, planning and episodic memory.

Modeling complexities in learned representations
State spaces. Behaviorists focused on behavior, rather than on
internal representations that had been previously studied through
introspective methods; RL models of learning similarly tend to
neglect such representations. Indeed, classic models of learning
take the state space, the action space, and the reward function for
granted, and focus on the algorithm that allows the estimation of
the expected value and choice policy instead [18]. In particular,
the state and action spaces are experimenter defined (e.g., state=
{light on, bell ringing} in a Pavlovian experiment; action= {press,
no press} in an instrumental conditioning task). However, from the
point of view of the agent, neither is obvious (Fig. 1A). Sensory
inputs in the real world are extremely complex and multi-
dimensional—defining the state space based on those inputs
would lead RL models to fail dramatically, due to the curse of
dimensionality [19]. How, then, does the agent know that only the
bell is relevant, as opposed to other sensory features? Recent work
proposes new models that integrate attentional modules into RL
algorithms to explain not only how we learn, but also what we
learn about.
For instance, in an attentional learning task [20], participants

were exposed to stimuli that varied along three dimensions with
three features each (e.g., color, shape, and texture). In a given
episode, only one dimension was relevant, and only one feature of
this dimension led to reward with high probability—thus
participants needed to learn what the relevant state space was,
in addition to learning the value of those relevant states.
Computational modeling showed that participants used atten-
tional filtering to do so [20–22], and that this attentional filtering
itself was learned over time [21]. These studies confirm that
learning can be explained with a simple RL update over an
internal representation of an attentionally derived state space,
where prefrontal executive functions play a fundamental role in
devising the state space. Other studies further confirm that the
state space over which value is tracked changes dynamically over
the course of learning [23]. These changes can account
parsimoniously for surprising effects—for example, a simulation
study offered a proof of principle that this “thinning” of the state
space to only task-relevant features could account for observed
ramping in dopamine signaling [24].
The process of defining a relevant state space is not necessarily

limited to the reduction of attentional dimensionality. Instead, it is
possible that some relevant states are not trivially linked to
compressed sensory information. For example, even in the
absence of current sensory information, one’s memory of
checking the weather forecast last night informs what they
believe the current relevant state is for the task of dressing in the
morning: Warm? Cold? Rainy? More generally, the latent unobser-
vable states over which RL operates provide a useful modeling
framework for capturing more flexible learning. These “belief
states” [25–27] are the result of internal computations and cannot
be directly inferred from current observations. The phenomenon
of reinstatement following extinction offers a useful example of
how such belief states extend RL models: classic RL models
cannot capture this phenomenon, because they simply “unlearn”
past associations during extinction. When belief states are
incorporated into these models, the agent creates a new
state during extinction, indicating a different context in which

the bell does not lead to reward anymore. At reinstatement, the
agent can recognize a previous context where the bell led to
rewards, and identify it as the current latent state, leading to faster
learning [26].
There is currently a debate in the literature as to which brain

regions represent this task-relevant state space [28, 29]. Recent
attention has been given to the orbitofrontal cortex (OFC) as a
potential locus [30, 31]. Indeed, a recent human fMRI study used
representational similarity analysis [32] to show that OFC
contained all the information needed to represent task-relevant
states, in a way that related to performance. This has since also
been observed in rodents [33], although OFC appears to
orthogonally encode value representation as well [34]. However,
there is also a host of recent literature implicating hippocampus in
state representation, under the name of cognitive maps. An
example of a cognitive map is the “successor representation”, a
compact representation of current and likely future states that
supports fast and flexible learning with simple RL-like mechan-
isms, and is putatively represented in hippocampus [35, 36]. A
recent proposal suggests that hippocampus and entorhinal cortex
work together to represent a cognitive map that respects
generalizable relational properties of the environment, but also to
identify specific, non-generalizable properties [37]. It remains to be
understood what distinct roles OFC vs. HC play in representing
states, and how other regions contribute to this role.

Action spaces. As in the case of the state space, the action space
is often taken for granted in RL models [18]: in a two-alternative
forced choice, does an animal choose between repeating or
switching, or between left and right? When typing, do I choose to
move my index finger in a specific motor movement, or to press
the key “T”? The process of considering which options to choose
from is separate from the process of choosing itself [38]. One
reason it is important to consider the action space relates again to
the curse of dimensionality: with too many possible choices (e.g., if
choice is encoded as continuous motor movements), learning
becomes exponentially slower. A “divide and conquer” approach
helps solve this: instead of considering all possible choices, we
make choices between a few options at a high level of granularity
(e.g., soup or salad), then conditioned on that choice, we make
choices at a lower level of granularity (e.g., tomato or onion soup),
and so on [39, 40]. (Fig. 1B).The hierarchical reinforcement learning
framework formalizes this extension of RL by adding to the basic
action space “temporally abstracted choices”, or options [39, 41],
which are local learnable policies that can be selected as a whole
and then are followed to a specified termination. This can, for
example, greatly simplify navigation problems, provided the right
options exist: an agent can choose to go open the door, rather
than making the sequence of choices to [stand up, turn right, [step]
*3, open the door]. Indeed, by using established options, we can
explore the environment more efficiently, transferring past knowl-
edge encapsulated in the option [42]. There is evidence that the
brain tracks options, as shown by option-specific learning signals in
the striatum [43] and anterior cingulate cortex (ACC) [44].
Abstract choices to “divide and conquer” a problem need not be

temporal abstractions, as stated in the options framework (Fig. 1B).
Another line of research focuses on hierarchy in the degree of
abstraction of a choice: for example, I can choose to answer an
email (abstract choice), which translates into different motor
choices in different situations (e.g., clicking an arrow, or a
combination of keys). A gradient of areas in lateral prefrontal
cortex represents decision-making problems at multiple levels of
abstraction [45, 46]. Recent research has expanded RL models with
such abstract choices, in the form of rules or task-sets [47, 48]. In
these models, agents select rules, which then condition more
concrete choices made in response to stimuli, and these policies
are learned via RL. Computational models of hierarchical choice
reveal an important role for medial prefrontal cortex in tracking
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rules via an inference process [49], or by propagation of
hierarchical errors [50, 51]. However, there is also evidence that
rule selection, in some cases, could also proceed via its own RL
process [48, 52]: indeed, there is evidence that the striatum
tracks rule values [53], and a recent study showed behavioral
evidence for parallel tracking of value at two levels of choice
abstraction [54].
Hierarchical learning models need to jointly define state and

action spaces at multiple levels of abstraction (Fig. 1B). For
example, one set of models [49, 55] defines a “context space” of
latent causes that condition the selection of task-sets, which then
condition (via RL) the selection of actions over a simpler state
space of visual stimuli. Other models include multiple (distinct)
observable state spaces [48, 54]. The relevant state space might
even be dependent on the selected rule, which includes an
attentional filter on the stimulus features [52, 56]. In short, allowing
flexibility on the state and action representations over which the
RL system operates has provided computational models of
learning with greatly increased flexibility, while keeping a bridge
to a biologically plausible implementation.

Modeling constraints on learning
Classic model-free RL models, which store “cached” estimates of
values, have been successfully extended by considering what
state and action spaces they operate over, and how they can be
dynamically modulated. The prefrontal cortex plays an important
role in these functions, thus taking advantage of a phylogeneti-
cally old system with fairly simple computations in basal ganglia
(RL), to support flexible, human-level efficient learning. However,
other computational models of learning propose other contribu-
tions that do not only depend on the RL computations performed
in cortico-basal ganglia loops.

Planning. One popular extension of classic RL models imported
the notion of “model-based” RL from the AI literature [19]. Model-
based RL describes algorithms that have access to a model of the
environment—usually the transition function (which state do I end
up with when I select action a in state s?) and the reward function.
So equipped, such agents can perform planning by internally
propagating forward the consequences of their choices, and are
thus able to actively re-calculate the estimated value of a choice
on the fly, even when the environment changes. However, the
flexibility of these algorithms comes at the expense of greater
demands on proactive forward planning, which relies on
prefrontal executive functions. The contrast between these
flexible but computationally expensive model-based algorithms
and more rigid but computationally cheap model-free algorithms
(which simply require storing and accessing the value of an action
in a given state) inevitably drew parallels with similar dichotomies
across research on slow/controlled (“System II”) vs. fast/automatic
(“System I”) forms of reasoning and decision-making [57, 58].
These parallels were substantiated by demonstrating that people
develop a bias towards model-free over model-based RL when
their executive functions are taxed [59, 60].
While the term model-based RL takes the specific meaning of

an RL model that uses a transition model to perform forward
planning to estimate values, many other extensions of model-free
RL have been proposed that involve the knowledge and use of a
model of the environment outside of such planning [61]. This
transition model is often used to infer a latent cause, such as the
task-relevant state, and perform appropriate credit assignment
[48, 61–63]. In most cases, the learning and encoding of the
transition model itself has been related to prefrontal function.
Knowledge of the structure of the environment can take multiple
computational forms, but generally leads to more flexible
adaptation in the face of changes in the environment. For
example, the successor representation mentioned above [35, 36]
summarizes knowledge about frequent transitions in the

environment in a way that enables an agent to flexibly change
their behavior when rewards change, without requiring planning.

Memory. The previous models still assume a theoretical “RL”
framework, where the objective of the algorithm is to optimize
long-term future reward, and thus the strategy is to estimate this
expected reward, or to estimate a policy that ensures this
objective [19]. However, humans also rely on other memory
systems that are more general and not specialized in valuation.
Arguably, evolutionary pressure likely ensures that such systems
contribute to choices that maximize rewards, as shown in artificial
neural networks that develop working memory-like activity when
trained from rewards [64]. Recently, cognitive models of learning
have leveraged this idea that memory systems not specialized in
valuation might nevertheless also contribute to learning. As an
example, there is now strong evidence that working memory
sometimes contributes a large portion of the observed behavior in
reinforcement learning tasks. Because information maintenance in
working memory is limited in time, it cannot be considered a
learning system per se-nevertheless, maintaining information over
short periods of time can actively guide the choices made. Indeed,
when feedback is reliable and participants only need to learn a
few associations, working memory is the main contributor to
learning [47, 65]. Reliance on working memory for learning
decreases with cognitive load [47, 66] or with uncertainty, but
remains an important contributor [67, 68]. It is important to note
that in most cases such behavior can still be well captured with a
“modified” RL model (e.g., where learning rate is dependent on
load), but that this approach misattributes behavior to a single
process rather than two, and hides the critical contributions of
prefrontal working memory to learning.

There is now also strong evidence that episodic memory
contributes to learning: indeed, if we can store individual
memories of information from past trials and sample such past
information from our memory, then we can use that information
to guide our decision (e.g., when I made this choice in this state, I
got rewarded - let’s do that again). There is a wealth of research
showing that such hippocampally-mediated processes contribute
to learning in parallel with striatally-mediated processes [69], and
interact with them [70, 71]. Indeed, recent research showed that
such sampling processes make significant contributions to both
“model-free” RL [72, 73] and “model-based” RL [74].

Meta-learning, strategies, heuristics. An important target for
computational models of learning is also the domain of “meta-
learning”, or learning how to learn. One example of this is the
dynamic modulation of one’s learning rate such that they learn
more from recent observations when the environment is changing
rapidly, but then integrate information over longer time scales
when the environment is changing slowly; this dynamic modula-
tion is tracked in ACC [75]. How the brain integrates such
information to dynamically modulate learning is still debated, as
the complex inference processes required are not biologically
plausible. Recent proposals have introduced heuristics that
approximate such processes to a high degree of optimality, while
staying closer to potential mechanisms [55, 76]. Other meta-
learning models have proposed upregulation of learning rates by
surprise in amygdala and PFC [77–79]. Additional meta-learning
mechanisms include modulating the expected scale of rewards
(reference point centering and range scaling) [80]; and identifying
and making use of regularities in an environment—for example,
using counterfactual learning when options are anticorrelated
[81, 82]. Last, the early learning process (in the first few trials of a
new situation) often relies on “meta-learned” heuristic strategies
that are dependent on prefrontal function: indeed, it is an
important period of exploration that reveals priors, biases and
heuristics that we rely on to quickly acquire information [42, 83].
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COMPUTATIONAL MODELS OF DECISION-MAKING
Weighing up subjective values
Whereas models of learning address how we come to know
something’s value in a given environment, models of decision
making address how we select between multiple options with
different values. The intervening computations determine which
inputs are relevant to the decision, how they will be differentially
weighted, the process by which options are selected, and what
outcome(s) result from this selection process (e.g., what kind of
action is taken) (Fig. 2).
Early model-driven research in decision neuroscience

borrowed heavily from the field of behavioral economics [84],
where researchers had described the functions people
applied when considering monetary outcomes that vary in their
likelihood (risk) or in how long it will take to acquire them
(delay). The goal here was to account for the fact that the same
monetary amount (e.g., $100) mattered to someone to a different
degree if it was a gamble versus a sure thing, and if they
would be receiving it immediately or after some prolonged period
of time.
Research examined the major elements that shaped these

evaluations, and what specific shape the value transformation
took (for more comprehensive reviews, see [85–89]). For instance,
studies of risk preferences [90, 91] examined how people weighed
the probability of a given outcome occurring (e.g., when offered a
guaranteed $100 versus an equivalent gamble that offered 50%
chance of $200 and 50% of $0). This work showed that people
weighed risk nonlinearly, and in a way that opposed choosing a
gamble with increasing risk (i.e., was risk-averse) when the possible
outcomes were all positive, and demonstrated the opposite
pattern (risk-seeking) when the possible outcomes were negative.
This work additionally revealed that the overall subjective value of
an option (SV) reflected a stronger weight on potential negative
outcomes than positive outcomes (loss aversion):

SV ¼ Vα for gains and SV ¼ λð�VÞβ for losses

where α vs. β represent sensitivity to magnitudes of potential
gains vs. losses (V), and λ represents an additional weight on losses
of any magnitude.
Studies of delay discounting examined how people overall

down-weight the value of a reward the longer it takes to obtain it
(e.g., potentially preferring $50 today over $100 in a year), with
studies often showing that these delays are discounted hyperbo-
lically, such that value demonstrates a steep drop-off after
relatively short delays before it plateaus at a lower level [92]:

SV ¼ V
1þ kD

where k is the degree to which a given reward (V) is discounted by
a given delay (D).
Studies of effort discounting examined how people similarly

discount reward value by the amount of physical [93] or cognitive
[94] effort required to achieve that reward, again typically finding
that these costs result in nonlinear down-weighting of rewards
(i.e., increasing effort requirements have greater and greater costs)
[87], for instance according to quadratic or sigmoidal functions of
cost (C):

Quadratic costs: SV ¼ V � kC2

Sigmoidal costs: SV ¼ V 1� 1
1þ e�k C�pð Þ

� �

where p represents the inflection point of the sigmoid function.
Identifying these subjective weighting functions serves two

purposes. First, it allows a researcher to estimate how an
outcome’s subjective value changes for a given person with
variability in factors such as risk and delay. These weights
effectively serve as an exchange rate across different types of
options. This in turn allows the researcher to identify subjective
equivalencies between pairs of options within a common currency,
for instance that a person cares equally about receiving $10 today
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Fig. 2 Evaluating and selecting between options. When deciding between a pair of options (e.g., whether to go buy a muffin or fruit salad
for breakfast), the agent must decompose those options into goal-relevant attributes (e.g., a1: tastiness, a2: healthiness, a3: price, a4: delay/
distance), with each option carrying a value for that attribute (e.g., a1,1: tastiness of muffin, a1,2: tastiness of fruit salad, etc.). Those attribute
values are weighted by top-down factors (e.g., which option/attribute is being attended to more closely) and bottom-up factors (e.g., how
much that person cares about taste vs. health; how readily information about this attribute comes to mind). The weighted attribute values
contribute positively (green arrows) or negatively (red arrows) to the overall subjective value (SV) of each option. The likelihood of choosing a
given option (e.g., muffin) can be determined by performing a softmax based on the degree to which one SV is higher than the other.
Alternatively, sequential sampling models (e.g., drift diffusion and leaky competing accumulator models—which dynamically accumulate
information up to a threshold level (e.g., based on SVs and/or lower-level attribute values)—can be used to predict choice likelihood as well as
expected distributions of response times.
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and $20 in 6 months. Second, it provides a quantitative estimate
of how people differ in their evaluation of these same variables
(e.g., in their discount or cost parameters), providing a basis for
research into individual differences in sensitivity to each. Early
research in neuroeconomics used these models to identify
correlates of each of these decision attributes—including risk
[95–97], loss [98], delay [99, 100], and effort [101, 102]—and
putative points of convergence, where a common currency-like
signal could be found. The network of brain regions that most
consistently tracks these re-weighted outcome values includes the
ventromedial prefrontal cortex (vmPFC), posterior cingulate
cortex, and ventral striatum [103–105].

Transforming values into choice
Estimating the values of a set of options is a critical first step to
modeling decision-making, requiring appropriate functions to
translate the objective option properties/attributes into subjective
values (Fig. 2). However, even once those values are determined,
there needs to be an algorithm for determining which option to
select. The most straightforward solution to this would be to select
whichever choice has the highest subjective value (i.e., if the
overall subjective values of Option A vs. Option B are $50 vs. $51,
select Option B). However simple this solution might be, it is
inconsistent with what is observed when people do select
between options.
A basic property of findings on option selection is that people

do not seem to always choose the better of two options, even
when accounting for differences in subjective weighting of each
of the choice attributes. If they did, we would expect to see that
their choices followed a step function—as long as Option B has a
higher value than Option A (as in the example above), they always
choose Option B, and vice versa. Instead, people’s choices follow a
sigmoid-like pattern—more step-like when there is a large
difference between the option values (e.g., Option B is much
more valuable than Option A) but, as that difference narrows,
people start to choose the higher-valued one with less consistency
(i.e., are increasingly likely to choose the “objectively” lower-
valued option). This pattern is similar to the well-characterized
psychometric functions observed when discriminating between
different percepts, and indeed comparable choice patterns have
been shown within the same participants performing both
perceptual and value-based decision-making tasks [106, 107].
To account for these inconsistencies, choice models incorporate

a noise term, which determines the extent to which choices will be
strictly determined by the higher-valued option versus by random
chance:

PrðChooseOption1Þ ¼ 1
1þ e�β SV1�SV2ð Þ

This function, referred to as a softmax, produces choices that are
increasingly likely to favor the higher-reward option the greater
the difference between the options (e.g., $10 vs. $1) and
increasingly likely to choose either option equally (i.e., express
indifference) when that difference is small (e.g., $10 vs. $9), with
the steepness of that transition being determined by an inverse
temperature parameter (β). The function can also generalize to
choices between any number of options, and is regularly used to
model choice in learning models described above.
A persistent question concerns the source of this decision noise.

Some of the potential sources of such “noisy” behavior—which we
will return to in a later section—relate to the selection process
itself, in particular the extent to which participants are engaging in
heuristic or strategic (e.g., “exploratory”) behavior to choose an
option other than the one that is seemingly best [108, 109].
However, another (and non-mutually exclusive) possibility is that
this noisy behavior reflects noise in the information being
processed (the value of one’s options), consistent with random

utility theory from economics [110, 111] and more recent theories
within psychology and neuroscience of evaluation as a con-
structive process [112, 113]. These theories have in turn facilitated
the development of a newer class of decision-making models that
attempt to simulate the dynamics by which individuals construct
the value of their options.

Modeling complexities in the choice process
Evidence accumulation. By incorporating the appropriate func-
tions for weighing values (e.g., exponential or hyperbolic) and for
selecting between options based on those values (e.g., softmax),
early decision-making models could successfully predict what the
outcome of a given decision would be (i.e., what choice a
participant would make when faced with a set of options).
However, these functions for transforming inputs to outputs do
not explain the dynamics by which this transformation occurred.
As a result, these models are also unable to predict how long it
would take to make a given choice. The next wave of decision-
making models sought to fill these gaps by leveraging sequential
sampling approaches that had been previously developed in the
context of signal detection theory (as a method for determining
how much information to collect before judging whether a signal
is present or absent [114]) and subsequently applied to the study
of cognition [115, 116].
According to these models, from the time a set of choice

options appear, the decision-maker is accumulating evidence for or
against each of those options; the more valuable a given option is,
the more evidence is assumed to accumulate in its favor on
average. This continues until the amount of evidence that has
been accumulated exceeds some threshold for making a choice;
the response time for that choice is indexed by the time at which
that threshold is crossed (along with a fixed amount of time
reflecting the time required to execute the response). Sequential
sampling models are therefore able to project both how likely a
person would be to make a given choice, and the distribution of
possible times at which that decision will be made. Further, an
inherent assumption about this accumulation process is that the
evidence being sampled about each of the options is sampled
with noise. This results in variability across choices for a given set
of option values (e.g., sometimes resulting in choosing the less
valuable option), thus accounting for characteristic inconsistencies
in real-world choice.
While they all follow the same general principles just outlined,

sequential sampling models vary along several dimensions,
including whether sampling occurs continuously or in discrete
time steps; the types of interactions they assume between the
sampling streams; and their level of biological detail/plausibility
[117, 118]. One of the most popular classes of models is the drift
diffusion model (DDM [115, 119]), which assumes that decisions
are made by continuously accumulating the relative evidence for
one of two responses (i.e., how much better one seems than the
other), referred to as the overall decision variable (DV):

DV tð Þ ¼ DV tð Þ þ w SV1 � SV2ð Þ þ noise tð Þ
where w represents the conversion between value difference and
evidence accumulated, and noise at time t is typically drawn from
a Gaussian distribution.
The decision threshold dictates how much more evidence one

must accumulate for one response relative to the other. The DDM
accounts for the observation that people are not only more likely
to choose the better option when their options are more different
in value (i.e., when there is much more evidence for one than the
other) but they are also faster to do so. The DDM can also account
for how the speed and accuracy (consistency) of a choice are
affected by differences in value weighting functions (e.g., based
on risk or delay preferences), choice/response biases (e.g., toward
a predetermined default), and choice deadlines [120–124].
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Choice competition. Whereas the DDM assumes that evidence is
being accumulated in relative terms (i.e., the individual is only ever
weighing the extent to which one option is better than another),
other models allow for evidence to accumulate for each response
in parallel, such that the decision is made once enough evidence
is generated for any one of those responses. This property enables
these models—such as the Leaky Competing Accumulator [125]
and Feedforward Inhibition [126] models—to account for the
finding that people generally respond faster when the overall
strength of a given option (e.g., its value) is greater, independently
of how much better that option is than the other ones available
[127, 128]. By incorporating interactions across multiple input and
output units (which can each be thought of as representing
populations of neurons tuned for a given option feature or
response type), models like these also offer greater biological
plausibility than the DDM. More elaborate models, like those
developed by Wang and colleagues [129] build further on these
sequential sampling models to provide additional levels of
biological detail, including interneuron-like units that capture
additional inhibitory dynamics across units [130].
Over the past few decades, sequential sampling models have

played an increasingly prominent role in modeling not only
behavior but also patterns of neural activity during value-based
decision-making. Signatures of this evidence accumulation
process have been identified throughout the brain [131, 132],
with some notable differentiation between neural circuits that
appear to track the accumulation of information about which
options are the most valuable (e.g., in orbital and/or ventromedial
PFC [128, 133, 134]); which response is the best overall (e.g., in
dorsomedial prefrontal or lateral intraparietal regions
[131, 135, 136]); and what motor action to implement (e.g., in
premotor and/or motor cortices [137–139]). However, as we
discuss next, the interpretation of these signals as indexing
evidence accumulation per se, rather than a covariate thereof, is a
matter of significant debate [140].

Post-choice evaluation. Whereas models of decision-making have
traditionally focused on the process leading up to a decision, with
the outcome being the choice itself, an additional benefit of
evidence accumulation models is that they can also generate
predictions for how the decision process continues to unfold after
the choice is made. In particular, these models can allow the
accumulation process to continue indefinitely following the
crossing of the decision threshold, and estimate the likelihood
that this evidence would have continued to strengthen in favor of
the action they chose, weakened, or even reversed such that they
would have even had a change of mind (i.e., chosen another
option instead) if given more time [141–145]. These extensions of
the sequential sampling framework can be used to index
metacognitive variables such as confidence/certainty in one’s
actions, and to examine how a person uses such information to
subsequently correct their behavior, adjust their strategy, or
otherwise improve their performance (e.g., attend more to options
on future choices) [146–148]. Work has shown that a person can
evaluate these same metacognitive signals of confidence/uncer-
tainty while making their choice (e.g., based on the overall
strength of evidence), and can make online adjustments to their
choice strategy accordingly (e.g., increasing their decision thresh-
old when less confident) [143, 145, 149, 150]. Metacognitive
evaluations thus offer a prominent alternative explanation for
putative neural correlates of evidence accumulation, including
estimates of the decision variable itself [127, 140, 151–154].

Modeling complexities in the outputs of choice
The models above describe the transformation of input values to
an ultimate choice. In most cases, this research has focused on
choices that involve a simple discrete action as the ultimate choice
output, such as a button press to indicate which of multiple

options to select. However, these models can also be applied to
more complex types of choice outputs, including those that are
continuous rather than discrete, internally rather than externally
directed, and/or linked hierarchically.

Control signals. Most actions in the real world require coordinat-
ing multiple different types of motor outputs (rather than, e.g.,
moving a single finger to press a button). They also require
determining both the types of efferents involved (e.g., which
muscles) and the intensity with which to engage those efferents
(e.g., how strongly to flex or extend a muscle). Decisions involving
such complex control signals can also be modeled as forms of value-
based decision-making [155–157], where people are simultaneously
evaluating possible outcomes of different combinations of control
adjustments. These models incorporate the additional considera-
tion that higher intensities of control (e.g., more vigorous actions)
incur greater costs (e.g., because they demand more metabolic
resources), which people experience as effort. The resulting cost-
benefit analysis aims to produce control adjustments that both
maximize potential future reward and minimize these costs (i.e.,
avoid using higher intensities of control than are necessary). Recent
work has extended these models from decisions about physical
actions (i.e., motor control) to decisions about how to invest one’s
mental resources (i.e., cognitive control) [158, 159], demonstrating
that the same form of cost-benefit analysis can explain how people
adjust their control allocation within and across tasks based on the
current incentives and task demands [160]. Signatures of these
control decisions have been found across regions of medial
prefrontal cortex—ranging from premotor and supplementary
motor areas to anterior midcingulate cortex—suggesting a
posterior-to-anterior gradient of decision-making for motor-to-
cognitive forms of control [161–164].

Response hierarchy. As discussed in an earlier section, real-world
behavior is also structured hierarchically, in that specific actions
often extend from higher-level goals (Fig. 1B). As a result,
decisions we make about a particular course of action are
constrained by decisions we have made about our goals, and vice
versa. Goal selection can encompass a wide range of timescales,
from short (e.g., whether to make coffee or tea) to long (e.g.,
whether to major in neuroscience or computer science). The
sequence of actions that satisfy those goals can likewise vary from
habituated sequences (e.g., making coffee) to a further set of
hierarchically structured goals (e.g., choosing classes, performing
homework assignments). Recent work has used sequential
sampling models to describe evidence accumulation occurring
across multiple levels of this hierarchy, with information about the
value of individual sub-options/actions and their attributes
accumulating to inform decisions about the higher-level choices;
[165–167] neural signatures of these parallel accumulators were
identified in similar neural circuits as mentioned earlier (e.g.,
dorsomedial PFC [166]). Additional work has used hierarchical
choice models to simulate decisions to pursue an effortful (but
rewarding) goal, and shown that simulated lesions to this model
(which is proposed to describe interactions between the ACC and
basal ganglia) reproduce characteristic motivational impairments
observed with lesions to homologous circuits in animals [168].

Modeling constraints on decision-making
Attentional focus. We ordinarily face more options than we can
process at once, and therefore must prioritize some over others.
For instance, a restaurant menu or course catalog might introduce
dozens or even hundreds of options to select from. To accumulate
evidence for all of these at once would be challenging if not
intractable. Recent work has sought to account for how we choose
what information gets prioritized for evaluation (i.e., which options
or features to attend to); how this attentional focus shifts over the
course of a decision; and how it influences the way in which
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options are evaluated to make our decision.
Models of decision-making have long acknowledged attention’s

role in shaping decisions [169–171]. When choosing between
options that each have multiple attributes, as is typically the case,
it was assumed that people assign different weights to these
attributes based on their relative priority for the decision-maker
(Fig. 2). For instance, a person choosing what to buy for lunch may
differentially weigh the tastiness vs. healthiness of their food
options; a person choosing a new car may differentially weigh
speed vs. fuel efficiency; and a person choosing between job
offers may weigh salary vs. location. The value of each option can
be determined through a weighted combination of the attribute
values:

SVOptionN ¼
X
a

wa ´AttributeValuea;N

where wa represents the weight a person places on attribute a,
which scales the value of a given attribute (e.g., level of
healthiness) for a given option N.
The process of selecting between these multi-attribute options

has been modeled similarly to the selection process described
earlier, with models differing in whether attributes first converge
to determine each option’s value or whether parallel streams of
evidence drive responses based on a given attribute
[118, 166, 169, 171–173].
These models capture the process by which people accumulate

evidence about choice options (and their constituent attributes)
under the assumption that all options are always given equal
consideration while deciding. However, as the restaurant menu
example makes clear, this assumption is implausible. Rather,
people selectively attend to one or more options at a time while
making their choice, potentially influencing the overall weight
those options are given at that moment in the decision process
before the person shifts their attention to other options. To
account for the influence of these attentional dynamics on
decision-making, an extension of the DDM was proposed [174]
according to which the option(s) that are in the focus of attention
are momentarily given more weight during evidence accumula-
tion, whereas unattended options are momentarily down-
weighted (scaled by a parameter θ):

DVðt þ 1Þ ¼ DVðtÞ þ w SVattended � θSVunattendedð Þ þ noiseðtÞ

This process adjusts dynamically over the course of a decision
such that, as attention shifts between the options over time, the
value of the currently attended option (whether rewarding or
aversive) is always magnified relative to the others. The
predictions of this attentionally-weighted DDM have been
validated using eye-tracking methods, showing that the likelihood
of choosing a given option, and the amount of time it takes to
choose it, both scale with the value of that option and the amount
of time a participant spent (overtly) attending to it [174–176].
Debates persist about how often these patterns of behavior can
instead be attributed to attention being a reflection rather than
predictor of upcoming choice [177], but recent work suggests that
both directions of causation are likely at play in many decisions
[178].
Work in this area has further examined how people decide

which options to attend to and for how long. For instance,
normative (Bayesian) models have been put forward that build on
the sequential sampling framework to propose that people
dynamically adjust which options they are attending to based
on which samples they think would be most informative for their
choice [179–181]. In particular, the normative prediction is that
people should attend most to options whose values are uncertain
and potentially determinative of what choice they should make.
Consistent with this prediction, work shows that people are more

likely to sample information about options that are of uncertain
value [180, 182] and that people spend more time evaluating
choice options when they are less certain about how they feel
about them [183].
The weighting of choice attributes can be reflected in interactions

between regions of lateral prefrontal cortex and vmPFC. Consistent
with earlier work on the weighting of risk and other modifiers of
potential outcomes, the vmPFC has been found to generally track
the integrated value of a broad set of option attributes—such as the
healthiness and tastiness of a given food item [184, 185]; the
aesthetic and semantic value of a symbol; [186] and the utilitarian
and emotional value of a given course of action [187, 188]—in each
case reflecting the value of a given attribute according to the weight
it was assigned by the decision-maker (but see, e.g., [189]). The
weighting of those attributes is often associated with lateral PFC
activity and its coactivation with vmPFC [184, 185].

Reference points. Our evaluation of an option is rarely done in
isolation but rather with reference to other potentially relevant
options. For instance, how good someone thinks a given sushi
restaurant is might vary based on their recent experience with
sushi from other restaurants, and based on what other restaurants
are available in their local environment. Such reference points
have been shown to result in apparent contradictions in people’s
choice behavior, whereby decisions are influenced by the
presence of a seemingly irrelevant alternative within the choice
set [190]. For instance, someone who chooses an apple over an
orange when presented in isolation may choose the orange over
the apple when these are presented in the context of some other
option, like a lemon.
It turns out that many of these irrational-seeming contrast

effects can be accounted for naturally by sequential sampling
models that accumulate evidence over individual attributes of
one’s options, such as the leaky competing accumulator [125] and
decision field theory [171]. These models allow competition to
occur within a given attribute across options (e.g., price vs. fuel
efficiency of three car options) so that, as attribute-specific
evidence accumulates in support of a given option (e.g., Car A has
high fuel efficiency), that accumulated evidence inhibits compet-
ing options. As a result, attributes of options that are seemingly
irrelevant (i.e., dominated by all of the other options) exert an
influence on how the attributes of these other options are
evaluated, leading to reference-dependence in the ultimate
choice [118, 169, 172, 191].
A separate class of recent models captures reference-

dependent choice phenomena by varying the choice values
themselves (the inputs to the choice) rather than the process by
which those inputs compete with one another to generate a
choice. Specifically, building on earlier models from research on
visual attention [192, 193], it was proposed that the values of
competing options may be normalized relative to a broader set to
which the individual has been familiarized or which are currently
being presented [194]. This divisive normalization account provides
an alternate explanation for the effects of irrelevant alternatives
on choice [195] (but see [196]) and makes additional predictions
about how contexts shape choice, for example that moderately
valued options will acquire greater value during periods when the
decision-maker has been primarily viewing low-value options and
will acquire lower value after primarily viewing high-value options
[197]. The latter prediction, that valuation is sensitive to the history
of past choice sets, is shared by a wider set of models, including
models of Bayesian inference mentioned earlier, which assume
that estimates of current choice values are influenced by prior
expectations of potential values in one’s environment
[179, 183, 198].

Information accessibility. The models described above assume
that evidence relevant to a given option is generated from some
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source for as long as that option is being evaluated, and scaled by
the extent to which that option is the focus of attention and by
the range of other options to which it is being compared.
However, it fails to address a more fundamental question: where
does this evidence come from? Recent work has attempted to
address this question both theoretically and experimentally, and
in so doing has provided insight into what kind of information is
privileged over the course of a decision. This work suggests that
evidence arises from sampling episodic memories and that, as a
result, the priority with which a given piece of evidence plays a
role in decision making is determined by factors governing the
accessibility of those memories [72, 73, 113, 199–201]. Recent
studies have shown, for instance, that experiences of extreme
outcomes (e.g., the largest gains and the largest losses while
gambling) are most memorable, leading to choices that favor or
oppose risk depending on the most extreme outcome in a given
setting [202, 203]. Such effects can be accounted for by assuming
that people simulate (sample) extreme outcomes more readily
than others when accumulating evidence to make a choice [204].

CROSS-CURRENTS AND SHARED CHALLENGES ACROSS
MODELS OF LEARNING AND DECISION-MAKING
Progress in modeling learning and decision-making has occurred
partly through parallel streams of research, but the nature of the
shared questions and methodologies has always required these
streams to interact closely. For instance, to measure what has been
learned about a set of options, researchers typically rely on decisions
between those options (e.g., how reliably is one option preferred to
another). From a practical perspective, this means that innovations
in modeling decisions are ultimately also beneficial to models of
learning. For instance, learning researchers have traditionally
estimated parameters of the learning process (e.g., learning rate)
based solely on the choice a participant makes when encountering a
set of options. Building on innovations in modeling the dynamics of
decision-making, recent work has shown that incorporating
information about how long it took to choose between those
options (e.g., as part of a generative decision model like the DDM or
other sequential sampling models) can provide more robust
estimates of that learning process when fitting data from a group
or an individual [205–207]. This same approach can also be used in
future work to better understand the role of selective attention
during learning, leveraging existing sequential sampling models of
attentional weighting during decision-making [174, 175]. Similarly, a
vast array of research on learning shows that model fits improve by
accounting for histories of past choice (e.g., whether the participant
pressed the left or right button on the last trial) rather than only
histories of past outcomes (e.g., [57, 208–210]), and that failing to
account for such choice history effects can lead to misestimation
and misinterpretation of standard RL learning rates [211].
As this last example makes clear, the benefits of studying how

models of learning and decision-making intersect go far beyond
the practicalities of model fitting. Indeed, learning is shaped by
past decisions as much as decisions are shaped by past learning,
and this occurs over multiple timescales and levels of action/
outcome complexity. The impact of recent choices on behavior
can thus reflect the combined influence of RL processes and the
use of strategies or heuristics (like choice repetition or alternation)
that optimize a different objective function entirely (e.g., learning
about the task or simply getting out of the experiment sooner)
[83]. Similarly, simultaneously accounting for choices and RTs not
only improves model fits but can also lead to unifying new
insights into the multiple processes being incorporated into a
given model, such as working memory and RL [67].
How different systems of learning and decision-making interact

with one another has been a major source of inquiry and debate
at a much broader scale [62, 212]. For instance, separate sets of
models have described the processes that underlie learning and

action selection for habitual versus goal-directed behavior, with
the former being determined through some form of averaging
over the outcomes experienced [57] or actions taken [208] when
previously in a given environment. By contrast, goal-directed
decisions have been described by forms of model-based learning
and decision-making outlined above. Recent work considers how
these two sets of algorithms work together [213, 214] and/or in
competition [208, 215, 216] to determine behavior [217]. Similar
approaches have also been taken towards modeling interactions
between goal-directed behavior and behavior that is driven by
Pavlovian associations between a situation and potential out-
comes (e.g., a dose of nicotine) and therefore biased towards
reflexive (“impulsive”) actions [218–221].
Another area of shared inquiry between models of learning and

decision-making concerns sources of variability in choice behavior
that are not otherwise explained by features of the environment.
These are collectively denoted by the term decision “noise,” and
incorporated as such into algorithms for action selection (e.g., the
softmax), but there are layers to this noise that can reflect
elements of learning, inference, motor execution, and even
strategy [108], making such noise part of a computational process
approximating intractable computations [76]. For instance, work
has shown that people preferentially engage in apparently noisy
decision-making during periods where it is optimal for them to
explore their environment, in those instances either deliberately
choosing an option that currently seems worse (directed explora-
tion) or choosing at random (random exploration) [109, 222, 223].
How these exploratory behaviors impact learning remains an
underexplored area [224, 225].
Another area that has recently gained significant momentum

examines how existing models can be augmented to account for
the role that affective experiences play in shaping learning and
decision making. Research on this topic varies from studies that
treat mood and affect as an isolated set of processes that act on
parameters of the models described earlier—such as the impact of
stress/anxiety on model-based planning [60, 226]—to more recent
work that examines how affect itself can be understood
through the lens of these model parameters. As an example of
the latter, Rutledge and colleagues [227] have recently
proposed that affective states may reflect an integration over
recent outcome prediction errors, such that people feel happier
after experiencing a sequence of large reward prediction
errors (see also [228]). Complementary research has examined
how these changes in affective states feed back into one’s
estimates of future outcomes, resulting in biases in learning and
choice [229–231].

CLINICAL IMPLICATIONS
Computational models of learning and decision making are an
important tool to further our understanding of the mechanisms of
cognition, and as such carry a great deal of promise for the study
of clinical conditions. The nascent field of computational
psychiatry aims to bridge the gap between neural substrates
and behavior, cognition and emotions, by exposing the mechan-
isms that support them [232–235]. For this approach to be
successful, it is crucial that the computational models reflect
computational components that can indeed be related to brain
function. In that sense, recent research often highlights both the
risks and benefits of the computational psychiatry approach. For
example, learning impairments in patients with schizophrenia are
very task-dependent, in such a way that RL modeling has led to
different conclusions across studies, despite their ability to capture
behavior well [236]. Taking into account PFC function in the form
of working memory, recent studies showed that these learning
impairments could be attributed to impairments in working
memory (and its downstream impact on learning performance)
but not to impairments in RL mechanisms themselves [237, 238].
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This reconciles previous findings by suggesting that different tasks
recruited working memory to different degrees, leading to
observed learning impairments in some tasks and not others. RL
modeling without considerations of working memory would
mistakenly attribute this to RL functioning. Similar observations
have been made with respect to attention—it was shown that
poorer learning performance in older adults during complex tasks
was not a reflection of impaired RL mechanisms but impaired
attention [239].
Variability in decision-making across clinical populations has

been observed at the level of how a given population weighs the
subjective value of decision options, for instance increased risk
aversion in anxiety disorders [240, 241]; increased delay discount-
ing in addiction [242, 243] and increased effort discounting in
depression [244, 245]. However, it remains unclear whether the
different choices these individuals are making (relative to healthy
controls) reflect differences in how they inherently value relevant
costs and benefits, or in how they generate information relevant
to their decision (e.g., which attributes they attend to, which
episodes are drawn from memory) and/or which heuristics/
strategies they use to help make their choice. Careful modeling
of the multiple contributors to performance on learning and
decision making tasks—and PFC’s role in each of these—is
therefore essential to guiding research into which underlying
neural substrates might be impaired.

FUTURE RESEARCH DIRECTIONS
Much research remains to be done to propose better quantitative
models of learning and decision-making. We highlight here a few
(non-exhaustive) directions for future research. First, as discussed
above, recent research increasingly takes into consideration the
fact that multiple systems contribute jointly to learning and
decision-making, where each system could make a choice of its
own, based on slightly different information. So far, this important
crossing of boundaries across systems has mostly been limited to
studying their competitive arbitration, and the “meta”-decisions
around them: for example, when should I use planning rather than
relying on cached values? However, an important question for
future research is whether these systems are more tightly
interlaced than a simple competitive interaction for choice.
Preliminary evidence suggests that, even when a system is
operational on its own, it can additionally be influenced by other
systems: for example, the content of working memory appears to
modify how RL reward prediction errors are computed
[57, 246, 247], in such a way that when we can rely on WM to
learn (e.g., under low load), we do not retain the information as
well [65]. An important direction for future research will be to
better understand how very disparate systems influence each
other’s computations. This will involve dissecting the mechanisms
through which the same information is processed by different
systems—for example, how outcome expectations are processed
by the RL, WM, and episodic memory systems—and identifying
the manner and extent to which information in one system feeds
into the others.
Another area for future research is to better understand the

representations that these computations operate over
[18, 140, 248]. We focused earlier on state and action
representation, where many questions remain open, but
another (arguably even more fundamental) question pertains
to how people represent outcomes, in particular what counts as
a reward. It has become evident that the answer to this is less
straightforward than often implied, as reinforcers are often
context-dependent [112], and neural representations of choice
value can be less reflective of how good one’s options are (the
reward value itself) than they are reflective of how well-aligned
those reward values are with one’s immediate goal (e.g., tracking
reward value positively when the aim is to choose the best

option, and tracking reward value negatively when the aim is to
choose the worst option [127, 249, 250]). Indeed, it remains
mysterious how humans are even able to so efficiently endow
even the most arbitrary goals with value to support learning and
decision-making [251]. Building on recent progress in under-
standing the role of context in shaping evaluation [252], future
work should seek to better understand how one’s evaluative
goals (both extrinsic and intrinsic) shape their consideration of
potential outcomes.
In addition to better understanding the evaluation of prospec-

tive outcomes, it is also important to better understand the
discounting of those outcomes by prospective costs such as
mental or physical effort. Extensive research has demonstrated
when and how people discount outcome values by such costs, but
why they do so (i.e., what gives rise to effort costs) remains
mysterious. Previous theories that either form of effort cost
primarily reflects bottom-up resource constraints (e.g., muscle
fatigue, depleted glucose) have seen mixed evidence, and have
given way to proposals that effort costs largely reflect top-down
constraints on expected effort output [253–255]. The basis for
these top-down constraints remains heavily debated, but includes
value-based models proposing that effort costs and their temporal
dynamics (e.g., fatigue) may reflect evaluations of the opportunity
costs (i.e., the value of foregone alternatives) when engaging in a
given form of action or task [253, 256, 257]. How these
opportunity costs are estimated, and what costs this evaluation
process incurs, are themselves open questions. A further challenge
for these and alternate accounts of effort costs (eg, [258, 259])
remains accounting for the variety of situations in which effort
appears to serve as a reward (i.e., something that people seek out)
rather than or in addition to serving as a cost [260]. More
fundamentally, the question of how to reliably estimate the costs
(and/or reward) for effort—for instance, using combinations of
behavior, self-report, physiological responses, and/or neural
activity—also remains a pressing challenge for future work [159].
There has been tremendous progress in AI and its ability to

excel in complex tasks previously thought to be human bench-
marks. This invariably raises the question of whether these newer
AIs could support better models of learning and decision making.
Indeed, successful efforts to bridge deep neural networks with
brain function in the domain of perception [261, 262] offer some
promise. Early efforts in the domain of learning and decision
making show that correlates of brain function, including PFC, can
be found when deep RL agents perform complex tasks [263, 264].
However, at this point, it remains unclear if this approach will
provide insights into underlying mechanisms. Instead, early
attempts show that deep neural networks can be a useful
analytical tool for predicting (rather than explaining) choices [265]
or for fitting classic cognitive models [266, 267]. Biologically
realistic neural networks, by contrast, remain an important area of
future research for computational modeling of decision making
and learning. Indeed, they offer the resolution necessary to test
specific implementational predictions, such as the role of the
subthalamic nucleus in response inhibition [149], or the role of
excitatory-inhibitory balance in networks supporting decision
making [263]. Such models bridge the gap between brain and
behavior better than simpler cognitive models do, especially when
considered in conjunction [14, 48], and may be a stepping stone
to bringing this knowledge to AI. Extending this approach
to modeling learning and decision-making functions that are
more dependent on PFC function is an area of active interest
[56, 268, 269], but remains limited and an important direction for
future research.

CONCLUSIONS
Computational modeling is an important tool for developing a
quantitative understanding of the mechanisms by which animals
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adapt to their environments, and what leads to maladaptive forms
of learning and decision-making within clinical populations.
However, to fulfill this promise, it is essential that models
successfully bridge across levels of analysis [9, 10], offering
algorithms that both relate to brain mechanisms and explain the
function of the computations. Recent research has successfully
started moving away from more simplistic models to models that
better encompass the complexity and constraints of learning and
decision-making, as supported by multiple distinct, interacting
neural systems. This direction remains important for future
research, and holds great promise for a more nuanced under-
standing of adaptive decision-making.
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