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A B S T R A C T

Previous work has demonstrated that cognitive control can be influenced by affect, both when it is tied to the
anticipated outcomes for cognitive performance (integral affect) and when affect is induced independently of
performance (incidental affect). However, the mechanisms through which such interactions occur remain de-
bated, in part because they have yet to be formalized in a way that allows experimenters to test quantitative
predictions of a putative mechanism. To generate such predictions, we leveraged a recent model that determines
cognitive control allocation by weighing potential costs and benefits in order to determine the overall Expected
Value of Control (EVC). We simulated potential accounts of how integral and incidental affect might influence
this valuation process, including whether incidental positive affect influences how difficult one perceives a task
to be, how effortful it feels to exert control, and/or the marginal utility of succeeding at the task. We find that
each of these accounts makes dissociable predictions regarding affect's influence on control allocation and
measures of task performance (e.g., conflict adaptation, switch costs). We discuss these findings in light of the
existing empirical findings and theoretical models. Collectively, this work grounds existing theories regarding
affect-control interactions, and provides a method by which specific predictions of such accounts can be con-
firmed or refuted based on empirical data.

1. Introduction

Many of our everyday behaviors, including making coffee, turning
on our computer, and opening a news website, are well-served by re-
lying on automatic or habitual forms of processing. However, many
situations require us to engage cognitive control in order to override
these default processes and better achieve our goals (Botvinick and
Cohen, 2014; Diamond, 2012; Friedman and Miyake, 2017; Posner and
Snyder, 1975; Shiffrin and Schneider, 1977). When we decide to stop
reading the news and start working, we will need to inhibit any dis-
tractions and flexibly shift our attention between multiple tasks. A
longstanding question centers on how we determine when control is
needed, and how much. Over the last few decades, this question has
been addressed by a variety of normative theories which postulate that
the amount of control allocated varies based on changes in the task
environment (e.g., the amount of conflict between competing response
tendencies, or the likelihood of making an error) (Alexander and
Brown, 2011; Botvinick et al., 2001; Brown and Braver, 2005; Verguts
and Notebaert, 2008; Wessel et al., 2012). More recent theories have
focused on the role of motivation in cognitive control (e.g., variations in

the incentives for and cognitive demands of the task) (Brown and
Alexander, 2017; Holroyd and McClure, 2015; Lieder et al., 2018;
Shenhav et al., 2013; Silvetti et al., 2014). This work has been suc-
cessful in accounting for how control allocation varies with explicit
incentives (e.g., monetary rewards) but, with few exceptions (Dreisbach
and Fröber, 2018; Inzlicht et al., 2015; Pessoa, 2009), it has largely
overlooked a major source of variability in control: affect.
A person's affective state can have a substantial influence on how

they allocate control. For instance, affect can determine the degree to
which a person is motivated to reach a particular goal state (e.g., one
that increases positive affect or reduces negative affect) in the moment.
Affect can also determine how a person perceives their task environ-
ment. For instance, being in a positive or negative mood may alter what
a person believes the requirements and payoffs of a task to be (e.g.,
answering email can seem easier when we are in a good mood).
Research has demonstrated both forms of affective influence in the lab,
showing that cognitive control varies as a function of affective experi-
ences evoked by the incentives for performance – those integral to
performance evaluation (i.e., performance-contingent rewards; e.g.,
Krebs et al., 2010; Locke and Braver, 2008; Padmala and Pessoa, 2011;
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for reviews see: Botvinick and Braver, 2015; Parro et al., 2018) – and as
a function of affective experiences evoked by factors unrelated (in-
cidental) to task performance, for instance those that induce a particular
mood state (i.e., positive mood induction or performance non-con-
tingent rewards; e.g., Dreisbach and Goschke, 2004; van Steenbergen
et al., 2015; for reviews see: Inzlicht et al., 2015; Pessoa, 2008;
Dreisbach and Fröber, 2018). While a number of such influences of
affect on control allocation have been documented (see Table 1 for a
non-exhaustive overview of the empirical findings), the mechanisms by
which these influences occur remain mysterious. Here, we seek to
leverage a recent integrative account of control allocation to help re-
solve this mystery by enumerating several possible mechanisms un-
derlying affect-control interactions.
The Expected Value of Control (EVC) theory offers a normative

account of cognitive control allocation, suggesting that such allocation
is determined by weighing relevant costs and benefits (Shenhav et al.,
2013, 2017). The theory assumes that this cost-benefit decision de-
termines the type(s) of control to allocate (control signal identities; e.g.
pay attention to the ink color in a Stroop task) and the intensity with
which to engage these control signals (e.g. the amount of attention paid
to the ink color in a Stroop task). Building on past theories of motiva-
tion (cf. Atkinson, 1957; Brehm and Self, 1989; Vroom, 1964; Wabba
and House, 1974), the theory assumes that this decision-making process
weighs the utility and cost of allocating control in order to specify a
control signal with the highest expected value of control (Fig. 1). At the
neural level, the theory proposes that this decision-making process
occurs in the dorsal anterior cingulate cortex (dACC) which then pro-
jects the output of this decision (a particular allocation of control) to
downstream regions that execute this control (Shenhav et al., 2013;
Shenhav et al., 2016). Recent work has implemented the EVC theory
within an explicit computational framework (Lieder et al., 2018;
Musslick, Cohen, & Shenhav, in prep; Musslick et al., 2015; Musslick,
Cohen, et al., 2018), and used this model to simulate an agent's beha-
vioral performance across a variety of tasks. These simulations have not
only reproduced a number of key phenomena in the cognitive control
literature – including performance costs related to response conflict

(congruency effects), the influence of such congruency on subsequent
control adjustments (congruency sequence effects), and performance
costs resulting from switching versus repeating task sets (switch costs) –
they have also demonstrated how these phenomena are influenced by
changes in task demands, performance incentives and individual dif-
ferences in decision-making parameters (e.g., how sensitive a given
person is to reward, and how effortful they perceive control to be).
While the EVC model does not explicitly address the role of affect in

influencing cognitive control, it does constrain the possible routes
through which these influences may occur. From the perspective of this
model, the overall value of control (and therefore the ultimate alloca-
tion of control) is determined by expected outcomes, perceived task
difficulty, and the subjective cost of exerting mental effort. Each of
these can be influenced either directly or indirectly by one's affective
state. For instance, expected outcomes (e.g., the rewards expected for
task performance) will scale with their affective salience (Knutson and
Greer, 2008; Slovic et al., 2007; Tversky and Kahneman, 1991; Wilson
and Gilbert, 2005), which can in turn vary in relation to a person's
current mood state (Clore et al., 2001; Eldar and Niv, 2015; Eldar et al.,
2016; Isen et al., 1988). Affective states can also alter the perceived
difficulty of a task, making it seem like more or less effort is required to
achieve one's goal (Efklides and Petkaki, 2005; Gendolla, 2000;
Gendolla et al., 2001). Finally, variability in one's affective state can
also change how effortful it feels to exert control. For example, several
studies have shown that individuals with depression, characterized by
prolonged negative affect, experience a task as more effortful compared
to healthy controls (Cléry-Melin et al., 2011; Brinkmann and Gendolla,
2007, 2008). Critically, each of these hypothesized mechanisms (which
are not mutually exclusive) have implications for how affect should
influence control evaluation (Figs. 2–5).
In order to elaborate on these mechanisms, here we use the EVC

model to investigate which components of one's valuation of control
may be influenced by affect. We simulate multiple possible accounts of
these affect-control interactions, specifically whether affect influences
one's reward sensitivity, utility discounting, expected task difficulty,
and cost of control. We examine the specific predictions each of these

Table 1
Effects of affect on two classic measures of cognitive control performance, conflict adaptation and task-switching behavior. (See main text for examples of affect's
influence on other measures of performance.)

Integral affect Process Performance-contingent rewards

Conflict adaptation Increased conflict adaptation (Braem et al., 2012).

Task-switching Performance contingent rewards increase switch costs (cf. Müller et al., 2007).

Incidental affect Mood induction Performance non-contingent rewards
Conflict adaptation Reduced conflict adaptation (Kuhbandner and Zehetleitner, 2011; van Steenbergen

et al., 2010; van Steenbergen et al., 2015)
Reduced conflict adaptation (van Steenbergen
et al., 2009)

Task-switching Reduced switch costs (Dreisbach and Goschke, 2004)

Fig. 1. According to the EVC theory, people select
the type and intensity that maximizes the overall
expected value of control (blue curves), which is
calculated as the difference between the expected
payoff for a given control allocation (e.g., the reward
for giving a correct response; green curves) minus the
associated controls costs (red curve). The peak of the
EVC curve identifies the optimal control allocation
(vertical black arrows). A) Increases in task difficulty
result in a rightward shift in the payoff curve (re-
flecting the fact that more control is needed to attain
a given level of accuracy), in this example resulting in
a rightward shift in the peak EVC (recommending an
increase in control). B) An increase in the payoff for a
correct response results in a heightening of the payoff

curve, and attendant increases in the EVC-maximizing control intensity. Adapted from Shenhav et al. (2013). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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accounts makes for control allocation and resulting measures of task
performance, showing that they produce dissociable influences on
measures of conflict adaptation and task-switching. We discuss these
results in light of existing empirical findings and theoretical frame-
works. By enumerating specific accounts of affect-control interactions
and their predictions for behavior, our work provides a path toward
identifying the mechanisms that best account for such interactions, and
to intervene on these mechanisms when they are maladaptive for an
individual.

2. Methods

The computational implementation of the EVC theory allows for the
simulations of behavior across different cognitive tasks. Here, we gen-
erate behavior from a computational model of EVC theory that has been
previously used to simulate a variety of different control phenomena
(Musslick et al., 2015; Musslick, Cohen, et al., 2018; Musslick et al.,
2019). Simulated EVC agents solve a task by specifying the control
signal on every trial. The control signal is chosen optimally based on an
internal model of the next trial (inferred state S ). This signal is then
used to interact with the environment, for example to commit one of
the two possible responses in the task (actual state S). After each trial
the agent updates the internal model based on its observation of the
current trial.
In order to generate reaction times and responses on each trial, we

use the drift diffusion model (DDM; Bogacz et al., 2006; Ratcliff, 1978).
Within the DDM framework, a response on the task can be con-
ceptualized as a result of the noisy accumulation of evidence toward
one of the two possible responses (e.g. responding based on the ink

color in a Stroop task). Here we assume that the rate of evidence ac-
cumulation toward one of the two responses is governed by a controlled
and an automatic component.

= +d d dcontrol automatic

The automatic component reflects the automatic processing of the
ink color and word content of the stimulus when no control is engaged:

= +d a aautomatic color word

The magnitude of the color-response (acolor) and the word-response
(aword) association depends on the strength of the association between
the stimulus and the response. The sign of the association depends on
the response (e.g. acolor<0 when the response is associated one button,
acolor>0 if the response is associated with the other button). It follows
that on incongruent trials the acolor and aword have the opposite sign,
while they have the same sign on congruent trials.
The controlled component of the drift rate is the sum of stimulus

response-associations, acolor and aword, each weighted by the intensity of
the corresponding control signal – one for processing the color (ucolor)
and one for processing the word content (uword):

= +d a u a ucontrol color color word word

Each of the two control signals (ucolor and uword) bias the processing
toward one of the two dimensions of the stimulus. In the case of the
Stroop task, higher control signal for processing the ink color dimension
improves the performance on the task. Reaction times and probabilities
of each of the two responses are derived from an analytical solution to
the DDM (Navarro and Fuss, 2009).
The optimal set of control signals U= {ucolor,uword} for each trial is

determined on the basis of the internal model of the trial

Fig. 2. Effects of anticipated reward on the expected
value of control and behavior. A) According to the
EVC theory, anticipation of higher rewards is pre-
dicted to increase control intensity. B) Higher an-
ticipatory affect (anticipation of higher rewards) in-
creases the congruency sequence effect in reaction
times and in error rates. C) Higher anticipatory affect
(anticipation of higher rewards) increases the switch
cost in reaction times and in error rates.

Fig. 3. Effects of utility discounting on the expected
value of control and behavior. A) According to the
EVC theory, discounted utility is predicted to de-
crease control intensity. B) Positive mood (high uti-
lity discounting) reduces the congruency sequence
effect in reaction times and in error rates. C) Positive
mood (high utility discounting) reduces the switch
cost in reaction times and in error rates.
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=S a a{ , }color word so that the expected value of control is maximized.
The expected value of control, for a set of control signals and for an
inferred state, is calculated based on the expected rewards and costs
associated with an outcome,

=EVC U S P U S V R Cost U( , ) ( , ) ( ) ( )

where P U S( , ) represents the probability of reaching the decision
threshold of a correct response and V(R) represents the value of com-
mitting a correct response (cf. Fig. 1). To simulate the discounting of
utility with increases in anticipated reward (increases in subjective
value are assumed to diminish as a function of anticipated reward),
subjective value and is calculated as V(R) = 25 ∙ loge(v ∙ R+ 1) where R
represents the anticipatory amount of reward offered for a correct re-
sponse in the task,2 which is discounted by the agent's responsivity to
reward v, henceforth referred to as reward sensitivity. The cost term
Cost(U) = Costimpl(U) + Costreconf(U) represents the total cost of cog-
nitive control (cost) and is composed of an implementation cost that

increases exponentially with the amount of control being allocated,

= +Cost U e e( )impl
c u c uimpl color impl word

as well as a reconfiguration cost that scales exponentially with the
degree to which control signals need to be changed relative to their
previous state

= +Cost U e( )reconf
c u u u u( ) ( )reconf color t color t word t word t, , 1 2 , , 1 2

where the implementation cost is scaled by parameter cimpl and the
reconfiguration cost is scaled by parameter creconf. The two cost terms
influence behavior in different ways. A higher implementation cost
leads the model to allocate control with a lower intensity, leading to
overall poorer performance on a task. A higher reconfiguration cost
prevents the model from adjusting its control signal when task demands
change. The latter may result in performance costs associated with task
switches. The model then selects a set of control signals U which
maximize3 the EVC within the inferred next trial S :

Fig. 4. Effects of perceived task difficulty on the expected value of control and behavior. A) According to the EVC theory, higher perceived difficulty is predicted to
decrease control intensity. B-C) In the lower range of expected task difficulty, positive mood (low expected difficulty) reduces the congruency sequence effect and
switch cost in reaction times and in error rates. D-E) In the upper range of expected task difficulty, positive mood (low expected difficulty) increases congruency
sequence effect and switch cost in reaction times and in error rates.

Fig. 5. Effects of control costs on the expected value
of control and behavior. A) According to the EVC
theory, higher costs are predicted to decrease control
intensity. B) Positive mood (low cost) increases the
congruency sequence effect in reaction times and in
error rates. C) Positive mood (high utility dis-
counting) increases the switch cost in reaction times
and in error rates.

2 Note that the anticipated reward amounts to the agent's expected internal
reward associated with a correct response. The anticipated reward may differ
from the actual reward obtained in the environment if the agents receives no
prior information about the actual reward, or if the actual reward is changing
over time. However, unless otherwise specified, we assume that the anticipated
reward is equal to the actual internal reward that the agent receives.

3 EVC theory does not commit to any algorithm by which the optimal signal
may be computed. For the simulations reported below, we determine the op-
timal control signal by searching over all possible control signals. Note that this
search is computationally expensive and may differ from how people determine
their optimal control signal. However, the presented results are independent of
the exact algorithm by which the globally optimal control signal is identified.
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U argmax EVC U S[ ( , )]i

The reaction time and the response in the actual state S are then
determined by the influence of the chosen signals on the rate of the
accumulation of evidence toward a decision bound (drift rate). After
observing the actual state, the agent updates its inferred state for each
stimulus-response association as follows

= +a a a a( )color t color t color t color t, , 1 , 1 ,

where α is the learning rate. Finally, agent then re-evaluates the optimal
control policy for the next trial based on its revised model of the task
environment.
We simulated4 the effects of incidental and integral affect in the

classic Stroop experiment, as well as a task switching experiment. In the
Stroop paradigm, the agent is presented with a two-dimensional sti-
mulus, one dimension representing an ink color and another dimension
representing a color word. On each trial, the EVC model is required to
indicate the response associated with the ink color. In congruent trials,
the word feature of the stimulus is associated with the same response as
the ink color whereas in incongruent trials, the color and word features
are associated with different responses. The experiment sequence en-
compassed 101 trials, and was fully balanced (excluding the first trial)
with respect to congruent and incongruent stimuli, as well as with re-
spect to all four transitions between the two trial types (congruent-
congruent, congruent-incongruent, incongruent-congruent, incon-
gruent-incongruent). To simulate congruent trials, we set acolor= 0.38,
aword = 0.40 such that both stimuli dimensions promote the same re-
sponse. On incongruent trials, we set aword=− 0.40 such that the word
dimension is associated with a different response than the color di-
mension. Note that the absolute magnitude of aword is higher than acolor,
reflecting the assumption that word reading is a more automatic pro-
cess than color naming (Cohen et al., 1990). We assessed the con-
gruency sequence effect as an interactive effect between the congruency
of the current trial and the congruency of the previous trial on per-
formance.
In the task switching paradigm, the agent had to switch between

two different tasks. Each tasks required the agent to indicate the re-
sponse associated with a target stimulus while ignoring the response
associated with a distractor stimulus. Similar to the Stroop task, trials in
each of the two tasks could either congruent, with atarget = 0.38,
adistractor = 0.40 or incongruent, with atarget = 0.38,
adistractor = − 0.40.5 The trial sequence encompassed 100 trials that
were randomly sampled with respect to stimulus congruency (con-
gruent, incongruent), the currently relevant task and the task transition
with respect to the previous trial (task switch, task repetition). We as-
sessed the switch costs in terms of the difference in RTs and error rates
between task switch trials and task repetition trials. In both paradigms,
the model allocated control between the two control signals (ucolor, uword
in the Stroop task, utarget, udistractor in each of the tasks in the task
switching environment) using the same range of control intensities as
described in the Stroop task. All parameters were selected such that
EVC agents achieved an overall accuracy of at least 70% for each of the
affect manipulations. We varied the range of control signal intensities
from 0 to 10 in steps of 0.2 for both control signals and set the an-
ticipated reward received for a correct response to R = 70. DDM
parameters were set as follows: starting point x0 = 0.0, noise coefficient
c= 0.7, non-decision time T0 = 0.2 s and threshold z= 0.4. Note that
the noise parameter can c be used as a proxy for task difficulty, whereas
the noise parameter of the inferred state c can be taken as a proxy for
the expected task difficulty. For each experiment, we simulated neutral

affect using the following default values: reward sensitivity v = 1,
implementation cost cimpl = 3, reconfiguration cost creconf = 1.5, and
learning rate α = 0.4.
We simulated effects of integral affect by increasing the anticipatory

amount of reward received for accurate performance to R = 300. We
simulated the effects of positive incidental affect, by either decreasing
an agent's reward sensitivity to v= 0.1 (high utility discounting) or by
decreasing its implementation cost to cimpl = 1. We also considered a
decrease in expected task difficulty as a proxy for positive incidental
affect, either for a low range of expected task difficulties ( < <c0.5 1),
or for a high range of expected task difficulties ( < <c1 2). Note that
we varied only one parameter at a time while holding the other para-
meters constant. For each parameter setting, we simulated 20 agents in
both paradigms to assess congruency sequence effect, as well as per-
formance costs associated with task switches.

3. Results

To examine potential mechanisms for affective influences on con-
trol, we focus on two cognitive control phenomena that have been
found to be susceptible to manipulations of affective state (Table 1): (1)
performance improvements (faster and more accurate responding)
when an incongruent trial (e.g., in a Stroop or Eriksen Flanker Task) is
preceded by another incongruent trial, referred to as a congruency se-
quence or conflict adaptation effect (Gratton et al., 1992); and (2)
performance decrements (slower and less accurate responding) when
the current task differs from the task performed on the previous trial
(e.g., categorizing the parity rather than the magnitude of a numeral)
referred to as switch costs (Allport et al., 1994; Rogers and Monsell,
1995). As shown in Fig. S1, the EVC model is able to reproduce these
classic observations, as well as the more basic observation that per-
formance worsens (slower and less accurate responding) on incon-
gruent relative to congruent trials (Musslick et al., 2015; Musslick,
Cohen, et al., in press; Musslick, Shenhav, & Cohen, in prep). We next
consider how differences in integral and incidental affect could influ-
ence how these agents allocate control, and the implications this would
have for observed behaviors. In accordance with findings in the lit-
erature, we focus our analysis on affect modulations of the congruency
sequence effect, as well as task switch costs (for a depiction of con-
gruency effects and overall control signal intensity, see Figs. S2 and S3
in Supplementary materials).

3.1. Integral affect

People vary in the degree of positive affect they experience upon
receiving a reward, and in the degree of positive affect they anticipate
experiencing when deciding how strongly to weigh that reward when
making a decision (Berridge and Kringelbach, 2015; Cloninger, 1987;
Corr, 2004; Gray, 1970; Knutson and Greer, 2008; Pizzagalli, 2014;
Zald and Treadway, 2017). We simulated this variability in anticipatory
affect by varying the amount of expected reward across simulated
agents; agents which anticipated higher rewards assigned a higher he-
donic utility to a given performance-contingent reward (e.g., money or
positive social feedback for completing a task) than agents which an-
ticipated lower rewards (Fig. 2A). Consistent with analogous simula-
tions reported in previous work (Lieder et al., 2018; Musslick et al.,
2015), we found that increasing anticipatory affect predicts increased
control allocation for equivalent rewards (Table 2). As a result, com-
pared to agents which anticipated low rewards, agents which antici-
pated high rewards perform better overall (are faster and more accu-
rate; Table 2) and demonstrate lower congruency effects and higher
congruency sequence effects (Fig. 2B). At the same time, these agents
also exhibit higher switch costs (Fig. 2C). While counterintuitive on
their face, these higher switch costs reflect a well-known tradeoff
whereby increasing focus on a particular task (in this case, resulting
from increasing reward expected from that task) means having to pay a

4 The code for all simulations is available on: https://github.com/musslick/
EVCAffect
5 Note that we used the same values for the automaticity of the target sti-

mulus and the distractor stimulus in both tasks. Thus, both tasks were equal in
terms of their difficulty.
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higher cost to disengage and switch to another task (Dreisbach and
Goschke, 2004; Goschke, 2000; Musslick, Shenhav, et al., 2018;
Ueltzhöffer et al., 2015, but see also: Kleinsorge and Rinkenauer, 2012,
Umemoto and Holroyd, 2015).
Importantly, these findings express variability predicted both at the

trait and state level – the different performance profiles we observe for
agents high versus low in anticipated affect apply equally to states in
which a given agent expects more or less performance-contingent re-
ward, whether as a result of actual or perceived changes in available
incentives. These state-based predictions are consistent with observed
changes in performance with increasing performance-contingent re-
wards (Table 1). In sum, these results suggest that increased integral
positive affect, resulting from receiving performance-contingent re-
wards, produces increases in control allocation.

3.2. Incidental affect

Positive affect can influence the subjective value of outcomes even
when it is not tied to performance on a task (Clore et al., 2001; Eldar
et al., 2016; Isen et al., 1988), for instance when an individual is in-
duced to feel good by a performance-noncontingent reward (Eldar and
Niv, 2015; van Steenbergen et al., 2009) or a mood induction procedure
(Dreisbach, 2006; van Steenbergen et al., 2015). Here we explore sev-
eral possible mechanisms by which such changes in incidental affect
(i.e., increases in positive mood) might influence decisions about con-
trol allocation.
First, it has been proposed that the subjective utility of rewards

increases logarithmically, such that rewards have decreasing marginal
returns beyond some level (Bernoulli, 1954; Coombs and Avrunin,
1977; Kahneman and Tversky, 1984; Tversky and Kahneman, 1991).
Under this assumption, it is possible that a given performance-con-
tingent reward has less utility to someone (i.e., utility is discounted) in a
very positive mood compared to someone in less positive mood
(Fig. 3A). We simulated agents that exhibited such utility discounting,
under conditions where they were already in an elevated baseline re-
ward state (equivalent to greater positive mood) – and therefore cared
less about potential task rewards – and compared these to conditions

where those agents were in the equivalent of a neutral mood. In these
simulations, positive mood led to decreased control allocation (because
a given reward was viewed as having lower utility than when in a
neutral mood; Table 2), resulting in smaller congruency sequence ef-
fects (Fig. 3B) and smaller switch costs (Fig. 3C). These effects were
evident both in response times and error rates.
A second possible mechanism by which incidental affect could in-

fluence control allocation is via perceptions of task difficulty. It has
been proposed that positive states lead people to perceive tasks as less
difficult, that is, as requiring less effort to achieve a given outcome
(Efklides and Petkaki, 2005; Gendolla, 2000; Gendolla et al., 2001;
Gendolla and Krüsken, 2001). We simulated such influences of mood on
expected task difficulty (Fig. 4A), and found that under these conditions
positive mood exerts a nonlinear influence on control allocation. When
tasks are perceived as low to moderate in difficulty, positive mood leads
to a smaller control allocation than neutral mood because the agent
(Table 2). Within this range of perceived difficulty, both types of agents
perceive the task as manageable, with the agent in a positive mood
perceiving it as less demanding of control. As a result, positive mood
leads to smaller congruency sequence effects and smaller switch costs
than neutral mood (Fig. 4B-E). Conversely, when the task is perceived
as especially difficult, an agent in a neutral mood is apt to divest their
control allocation (and/or quit the task entirely) whereas an agent in a
positive mood would be more likely to “persevere,” investing a higher
level of control to meet the challenges of the task. As a result, in this
upper range of perceived difficulties, the findings in Fig. 4 (B and C)
reverse, with positive mood resulting in larger congruency sequence
effects and larger switch costs (Fig. 4D-E).
Finally, it is possible that, rather than incidental affect influencing

the perceived utility of or demands for control, it instead influences
how people experience the control being allocated. Specifically, it is
possible that exerting control feels less effortful when one is in a posi-
tive rather than neutral mood (cf. Cléry-Melin et al., 2011). We simu-
lated control allocation based on this account, allowing positive mood
to decrease the expected cost of control (i.e., how aversive a given al-
lotment of control is; Fig. 5A). Under these conditions, agents in a po-
sitive mood were overall willing to invest more control in a task

Table 2
Results of the simulations.

Integral 
Affect 

Incidental Affect 
(positive vs. neutral) 

Enhanced 
anticipated 

rewards 

Decreasing 
marginal  

utility  

Decreasing 
expected difficulty 

(lower range) 

Decreasing 
expected difficulty 

(upper range) 

Decreasing 
cost of 
control 

Control intensity ↑ ↓ ↓ ↑ ↑

Overall performance ↑ ↓ ↓ ↑ ↑

Congruency effect ↓ ↑ ↑ ↓ ↓

Congruency sequence 
effect ↑ ↓ ↓ ↑ ↑

Switch costs ↑ ↓ ↓ ↑ ↑

Note. The arrows pointing up indicate an increase, and the arrows pointing down a decrease in the effect. Performance im-
provements are marked in green, and performance decrements in red.
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(Table 2), resulting in larger congruency sequence effects and larger
switch costs (Fig. 5B-E). Note that while the magnitude of the presented
results is a function of the chosen parameter range, we focused our
analysis on the qualitative direction of the effects.6

4. Discussion

Affect has a pervasive influence on various cognitive processes such
as perception and attention (Pourtois et al., 2013), cognitive control
(Pessoa, 2008, 2009), and judgment and decision-making (Blanchette
and Richards, 2010; Lerner et al., 2015; Slovic et al., 2007). While
empirical studies have demonstrated the importance of affect in di-
recting information processing (Dreisbach and Fischer, 2012; Dreisbach
and Fröber, 2018; Inzlicht et al., 2015), normative theories of cognitive
control have largely overlooked affect's role in control allocation. In this
study, we leveraged a computational implementation of the EVC theory
(Lieder et al., 2018; Musslick et al., 2015; Shenhav et al., 2013) to si-
mulate several candidate mechanisms through which cognitive control
can be influenced by integral affect (e.g., performance-contingent re-
wards) and incidental affect (e.g., positive mood induced in a perfor-
mance-noncontingent manner). In addition to capturing behavioral ef-
fects commonly found in conflict and task-switching paradigms
(congruency sequence effects and switch costs), these simulations de-
monstrated how such effects would vary based on several putative ac-
counts of affect-control interactions (including whether incidental po-
sitive affect modulates discounted utility, expected task difficulty, or
the cost of control). These findings provide quantitative and testable
predictions that can be compared directly with existing and future
empirical findings.
People differ in the amount of positive affect they experience when

anticipating potential rewards (Berridge and Kringelbach, 2015;
Cloninger, 1987; Corr, 2004; Gray, 1970; Knutson and Greer, 2008;
Pizzagalli, 2014; Zald and Treadway, 2017). We tested how variability
in the (integral) positive affect one anticipates for successful completion
of a task (i.e., performance-contingent reward) would influence their
control allocation and performance on such tasks. Our results show that
increases in anticipated rewards lead to increased allocation of control.
This result is in agreement with empirical (Botvinick and Braver, 2015)
and computational (Lieder et al., 2018; Musslick et al., 2015) work
demonstrating that, holding the strength of anticipatory affect constant,
increases in incentives lead to greater control allocation (Fig. 1A). Our
computational model successfully captures findings showing that con-
flict adaptation effects increase with increasing performance-contingent
reward (Braem et al., 2012). At the same time, our findings also predict
that larger performance-contingent rewards come at the expense of
higher switch costs, reflecting a tradeoff between cognitive stability in
the face of distraction (achieved by allocating high amounts of control
to a single task) versus cognitive flexibility (achieved by allocating low
amounts of control to a previously executed task, making it easier to
reconfigure to a new task when a switch occurs) (Musslick, Shenhav,
et al., 2018). Large performance-contingent rewards increased the
amount of control allocated to a single task (Lieder et al., 2018;
Musslick et al., 2015), and therefore require overcoming higher re-
configuration costs. Finally, the results predict that traits that result in
enhanced anticipatory affect (e.g., Carver and White, 1994), should
result in both increased conflict adaptation and higher switch costs.
Positive affect can be induced by factors incidental to the task at

hand, and can influence several components crucial for deciding how to
allocate control. First, incidental affect can change the subjective value
of outcomes in the task (Clore et al., 2001; Eldar et al., 2016; Isen et al.,
1988). The subjective utility of performance-contingent rewards is
known to increase logarithmically (Kahneman and Tversky, 1984), thus

having diminishing returns. Positive mood could increase the baseline
expectation of rewards, thus resulting in discounted subjective utility
for people in positive compared to those in neutral mood. Second, in-
cidental positive affect can influence the expectations about task diffi-
culty. Positive mood orthogonal to the task at hand can reduce the
expected difficulty of the task (Efklides and Petkaki, 2005; Gendolla,
2000; Gendolla et al., 2001). Third, it is possible that affect modulates
the subjective experience of the effort exerted in a task. In this way,
positive affect could reduce the cost of control allocation (cf. Cléry-
Melin et al., 2011). We simulated each of these accounts, and showed
that they make divergent predictions, that can be validated against
existing findings. For instance, a number of studies have shown that
incidental positive affect reduces the conflict adaptation effect
(Kuhbandner and Zehetleitner, 2011; van Steenbergen et al., 2009; van
Steenbergen et al., 2010; van Steenbergen et al., 2015) and decreases
switch costs (for a recent review see: Dreisbach and Fröber, 2018). Our
results demonstrate that this pattern of findings can be reproduced by
an account where incidental affect influences the marginal utility of
reward but not the cost of control. A perceived difficulty account can
explain such findings under some conditions but not others (see below).
Thus, our model not only generates quantitative predictions regarding
different underlying mechanisms of affect-control interactions, it also
constrains possible accounts of prior findings.
Of the three proposed mechanisms for control's interactions with

incidental affect, modulation of the expected task difficulty was the
only one which produced nonmonotonic changes in control intensity.
From the perspective of this account, when a task is expected to be
moderately difficult at “baseline” (under a neutral mood), positive
mood will make it seem easier and will lead to a relaxation of control.
However, when the baseline expectation is that a task is very difficult,
positive mood can lead a person to increase control rather than give up.
Thus, the influence of mood on control will crucially depend on the
difficulty of the task(s) at hand. This result provides a clear set of
predictions that can be tested in future studies.
Our current work focuses on potential influences of affect on the

evaluation of control. Other theoretical frameworks have considered
alternate roles for affect, including whether increases in control are
driven by aversive experiences (e.g., anxiety) that are triggered by re-
sponse conflict, in order to help regulate such affective experiences
(Dreisbach and Fischer, 2012; Inzlicht et al., 2015; van Steenbergen,
2015). These aversive experiences thereby induce increases in, for in-
stance, conflict adaptation. These theories share our model's prediction
that control will tend to increase with increasing conflict. However,
unlike our model, they do not predict (in any obvious way) that control
should decrease once conflict/difficulty exceeds a particular threshold.
These theories and our own identify potential roles for affect in the
selection/allocation of control, but there is an important gap between
the determination and execution of control (for early work see: Stroop,
1935; Gollwitzer, 1993) and other theories have proposed that affect/
emotion could directly influence the way in which control is executed.
For instance, it has been proposed that positive affect may increase
cognitive flexibility (e.g., task-switching) by influencing the gating of
information into and/or out of working memory (Ashby et al., 1999;
Dreisbach and Fröber, 2018). There is reason to believe that positive
affect may influence both the selection and execution of control,
through associated increases in dopamine (Westbrook and Braver,
2016). At the same time, recent work also shows that these same me-
chanisms produce significant individual variability in the encoding of
incentives, showing that individual differences in baseline dopamine
modulate the influence of incentives on control (Aarts et al., 2010,
2011, 2014; Froböse et al., 2018), producing nonlinear (U-shaped) ef-
fects on performance and decision-making analogous to those we find
when varying perceived difficulty.
Other frameworks have focused on the effects of positive affect on

cognitive flexibility (e.g., task-switching). Ashby and colleagues have
proposed that the increases in flexibility due to positive affect are

6 Also note that the standard error of the mean for each effect decreases with
the number of sampled EVC agents.
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mediated via the influence of positive affect on dopamine (Ashby et al.,
1999). More recently, it has been proposed that positive affect can
lower the updating threshold of working memory and thus increase
flexibility (Dreisbach and Fröber, 2018). These mechanisms are as-
sumed to be mediated by dopamine, a neurotransmitter crucial for re-
ward processing and cognitive control (Cools, 2019). While our current
work does not examine affect's influences at each of these levels, it does
not preclude the possibility that these function in parallel. Future
modelling work should attempt to explicitly include the role of dopa-
mine to better understand the interactions between affect and cognitive
control. Importantly, we also provide potential points of divergence
from the existing frameworks. For instance, while the aversive conflict
account shares our model's general prediction that control will tend to
increase with increasing conflict, our account differs in its prediction
(noted earlier) that control should decrease once conflict/difficulty
exceeds a particular threshold.
Our computational approach to investigating the role of affect in

cognitive control offers several important directions for future research.
First, in order to understand the mechanisms by which affect exerts its
effects on task performance (e.g., conflict adaptation and task-
switching), it will be crucial to further investigate how affect modulates
perceived demands and incentives for engaging in cognitively de-
manding tasks. Recent work provides a promising example of such
modelling being applied to understanding how mood dynamically
shapes expectations of reward (Eldar et al., 2016), providing a platform
for building on (and further constraining) the work we describe here.
Second, our approach also reveals that the same measurable outcome
(e.g., a reduction in the conflict adaptation effect) can result from
multiple mechanisms (e.g., higher utility discounting or decreased cost;
cf. Musslick, Cohen, et al., 2018). Determining which of these provide
the best account of affect-control interactions will therefore require
combining modelling, measures of behavior and neural activity, and,
most importantly, task paradigms that are carefully designed to vary
the construct of interest (e.g., perceived utility vs. difficulty). By the
same token, our work points to additional sources of heterogeneity in
empirical findings, arising from individual differences in affect's influ-
ence on control valuation both within and across individuals.
The formal approach used here allows for a more direct comparison

between the predictions of different models. In this study we have used
the computational implementation of the EVC theory, but several other
neurocomputational models of cognitive control (Brown and Alexander,
2017; Holroyd and McClure, 2015; Verguts et al., 2015) and theories of
motivation (Brehm and Self, 1989; Manohar et al., 2015; Silvestrini,
2017) include some of the components which we have investigated here
and make a number of predictions that qualitatively overlap with the
EVC theory. For example, motivational intensity theory (Brehm and
Self, 1989) posits that effort investment depends on task difficulty in a
non-monotonic fashion: as the difficulty of a task increases, an agent
may choose to invest more effort as long as success is possible. How-
ever, once the task difficulty is high enough so that success on the task
is no longer expected, an agent may choose to disengage from the task.
Support for this prediction comes from physiological studies which use
the responses of the cardiovascular system as a measure of effort mo-
bilization (Wright, 1996; Silvestrini and Gendolla, 2019). In this way
there is a convergence of motivation theory and physiological studies
on one side, and the neurocomputational accounts of effort investment
(Manohar et al., 2015; Shenhav et al., 2013; Verguts et al., 2015) on the
other. Silvestrini (2017) has proposed an integrated framework that
aims to bridge the research on effort and cardiovascular reactivity with
the cognitive control research with a specific focus on the EVC theory.
Future modelling work should explore similarities and differences be-
tween the predictions of these different theoretical accounts when it
comes to the role of affect in cognitive control.
Divergent predictions of these accounts can be tested with a com-

bination of behavioral measures that index task selection and perfor-
mance; peripheral physiological measures that index arousal, affect,

attention, and effort output (e.g., pupil dilation, corrugator muscle
contraction, cardiovascular activity); and neural measures that index
the processing of incentives, task demands, motivation, and control
(Gendolla et al., 2012; Inzlicht et al., 2015; Shenhav et al., 2017; Wel
and Steenbergen, 2018). In particular, several theories predict that
dACC sits at the interface of affect, motivation, and cognitive control
(Cavanagh and Frank, 2014; Holroyd and Yeung, 2012; Inzlicht et al.,
2015; Shackman et al., 2011), including the EVC theory, which pro-
poses that dACC integrates EVC-relevant information to calculate EVC
and determine (and subsequently motivate) the optimal allocation of
control (Shenhav et al., 2013, 2016). These theories would thus predict
that the influence of affect on control should be observable in dACC
activity and associated EEG indices of performance and feedback
monitoring, consistent with extant findings (Cavanagh and Shackman,
2015; Hajcak et al., 2004; Proudfit, 2015; Shackman et al., 2011;
Ullsperger et al., 2014).
Formalizing the relationship between affect and cognitive control,

as we have here, can also help to inform research on psychopathology.
For instance, reward-related anticipatory affect and approach motiva-
tion are known to be enhanced in certain disorders (e.g., addiction;
Dalley and Robbins, 2017; Koob and Volkow, 2010) and diminished in
others (e.g., depression and schizophrenia; Barch et al., 2015;
Pizzagalli, 2014; Zald and Treadway, 2017). While our current work
has focused on factors related to positive affect (like reward anticipa-
tion), a similar approach can be used to also inform our understanding
of maladaptive influences of negative affect and cognitive control,
which have been observed in disorders of mood (Gotlib and Joormann,
2010; Joormann and Vanderlind, 2014) and anxiety (Eysenck and
Derakshan, 2011; Eysenck et al., 2007). An important next step in this
field is to propose and test putative maladaptive mechanisms through
which affect interacts with cognitive control and other cognitive pro-
cesses (cf. Grahek et al., 2019). While the research on affect and cog-
nitive control in psychopathology has mostly been guided by qualita-
tive models (Grahek et al., 2018), further computational work could
lead to formalized models that can be studied within the framework of
computational psychiatry (Huys et al., 2016; Montague et al., 2012).
We hope that this formal approach can help guide future studies in this
direction. One interesting candidate for maladaptive mechanisms of
negative affect is the precision with which control signals are im-
plemented once they are specified. In this work, we investigated how
the specification of control signals is affected by different motivational
parameters. However, EVC theory distinguishes the specification of a
control signal from its implementation. Constraints on the latter may
account for variability in one's capacity to exert cognitive control (see
Musslick et al., 2019). A promising avenue for future work is therefore
the exploration of computational mechanisms that mimic impaired
performance in cognitive control as a result of negative affect.
In conclusion, here we have demonstrated multiple routes through

which affect can influence the allocation of cognitive control. While
empirical data points to an important role of affect in cognitive control
allocation, the normative models of control have largely overlooked the
role of affect. Here we have relied on the computational implementa-
tion of the EVC theory to simulate the potential mechanisms which can
explain the existing empirical data. Our results suggest that affect can
influence cognitive control via its influence on perceived task difficulty,
the amount of effort needed to complete a cognitive task, and/or the
influence of affect on the marginal utility of successfully performing the
task. In this way affect plays a crucial role in determining when and
how much cognitive control to allocate.
Supplementary data to this article can be found online at https://

doi.org/10.1016/j.ijpsycho.2020.02.001.
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